本文主要是介绍[原创]用哈希表优化的lz77压缩算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
最近终于有空研究研究E*F的K*KYU2。
和预料到的一样仍然是广泛使用LZ77,而且是毫不改变地使用LZ77……但是,时代进步了,图片文件都是真彩色的了,大小变大了3倍,仍然使用LZ77的代价就是速度……大家都知道LZ77的特点就是解压超快,压缩巨慢(不然就不会有LZW这种不伦不类的算法出来了……)
在png的相关网站上查找了一下优化方案,自己写了一下优化代码,虽然目前速度仍然不能很让人满意(在双核的机器上压缩一个160多兆的文件用了60多秒),但是勉强可以用于实际应用了。贴出来和大家分享。如果要进一步优化,估计要玩一些trick,或是借助于指令级别的。
以下讨论是基于4096字节定长窗口的字典的LZ77,字节组织是每bit表示查表或是原数据;查表是2字节,前16位表示索引,后16位表示长度,因此最长的序列只能有15字节。优化的思路是哈希表。
由环境可以看出,低于3个字节的码序列是不需要查表保存的,因此码的最短长度是3个字节。使用一个哈希算法将之转化成1个字节的哈希码。这种哈希码共有256个。当在查表前,首先要计算出当前字节及后面两个字节组成的序列的哈希码,然后在哈希码表中查得第一条匹配记录。当然,即使哈希码匹配,3字节并不一定完全一样,这之后还是需要按字节比较。但这可以提前淘汰大部分的数据。匹配后,再查下一条记录。
优化的负担是额外增加了一个哈希码头指针表和一个链表。每一个字节在字典中的更新都会造成它本身及前面两个字节处共3个字节的哈希码变化,即表项删除和增加。为了使这种删除和增加更有效率,做成了双向链表的形式(实际测试下来比单向节省约一半时间)。当然这里的链表是以数组形式实现的,不需要动态分配空间,否则所带来的负担将是不可承受的。字典定义如下:








其中,hash_start是256个哈希码的首码索引。hash_next是每个哈希码的下一个编码,hash_prev是每个哈希码的前一个编码。均以-1表示无效。
字典初始化函数如下:























初始值仅后面16个码可用。
删除和增加哈希码函数:





这篇关于[原创]用哈希表优化的lz77压缩算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!