静态时序分析:SDC约束命令set_driving_cell详解

2024-02-24 01:36

本文主要是介绍静态时序分析:SDC约束命令set_driving_cell详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

静态时序分析icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12567571.html?spm=1001.2014.3001.5482


        在上文中,我们不建议使用set_drive命令而是使用set_driving_cell命令,这是一个描述输入端口驱动能力更精确的方法。因为大多数情况下,只有库单元的设计者熟悉单元门内部的输出电阻情况,因此直接指定驱动单元而不是指定驱动电阻更容易。

        该指令的BNF范式(有关BNF范式,可以参考以往文章)为:

set_driving_cell[-lib_cell lib_cell_name] [-library lib][-rise] [-fall] [-min] [-max][-pin pin_name] [-from_pin from_pin_name][-dont_scale] [-no_design_rule][-none][-input_transition_rise rtran][-input_transition_fall ftran][-multiply_by factor] port_list

指定驱动单元名称

        -lib_cell选项用于指定驱动输入端口的单元,当单元的输出端口不只一个时,可以使用-pin选项指定输出引脚。默认情况下,set_driving_cell命令在链接库中搜索单元。

指定端口列表

        指定一个端口列表,包含输入端口或输入输出双向端口,如果有多于一个端口,需要使用引号或大括号包围。

简单使用

        以图1所示的电路图为例,首先在输入端口clk定义一个时钟。

create_clock -period 10 [get_port clk]

图1 一个简单的例子

        接着在输入端口d、c上分别定义两个输入延迟,参考时钟为clk。

set_input_delay 0.5 -clock clk [get_port d]
set_input_delay 0.5 -clock clk [get_port c]

        假设在我们的库中有一个叫做CLKINVX1的反相器,使用下面的命令指定输入端口d的驱动单元为CLKINVX1。

set_driving_cell -lib_cell CLKINVX1 [get_port d]

        使用这个命令时,会产生一个警告,如下所示,后面的小节我们会解释原因。

Warning: Design rule attributes from the driving cell will be set on the port. (UID-401)

        现在可以使用report_port -verbose命令报告输入端口的驱动情况了,如图2所示。

图2 端口驱动单元报告

        最后使用report_timing命令分别报告输入端口d到触发器的时序路径,记得使用-transition_time选项,结果如图2所示。 

图3 输入端口d的建立时间时序报告  

        可以看到,此时输入端口d的转换时间是0.0191175,并且带来了0.0045136的额外输入延迟,这是不包括在输入延迟(input external delay)中的。

延迟和转换时间计算原理

        那么这些数据是如何计算出来的呢,我们可以以图4的电路图为例做个实验。

图4 一个简单的实验 

        根据lib文件中的信息,我们使用set_load命令给输出端口d加上0.001494的负载,这是为了模拟图一中U4单元的输入引脚A的电容。

set_load 0.001494 [get_port d]

        接着使用report_delay_calculation命令,就可以知道U2的单元延迟和转换时间的计算情况了,如图5、图6所示。

 report_delay_calculation -from [get_pin U2/A] -to [get_pin U2/Y]

图5 CLKINVX1的有负载延迟计算情况

图6 CLKINVX1的有负载转换时间计算情况

        对比图6与图3可以发现,转换时间的计算方式确实是直接通过非线性延迟模型(NLDM)计算得出。而且我们可以看到,尽管使用了反相器CLKINVX1作为驱动单元,input_external_delay和输入端口d的边沿都是下降沿,这是因为input_external_delay是从输入端口d的边沿反推回去得到的边沿,也就是说时序报告中没有指明驱动单元的输入极性,但是它可以被指定,后面的小节会说明。

        但是还有一个很奇怪的事情,图3中的延迟值0.0045136却和图5中的延迟计算结果0.0170837不同,这是因为这个延迟的计算方式为loaded driving_cell delay - unloaded driving_cell delay,即带负载延迟减去零负载延迟,因此是0.0170837减去零负载延迟。

        我们可以继续在图4中模拟这种情况,即使用remove_load命令把负载去除,延迟计算结果如图7所示。

图7 CLKINVX1的无负载延迟计算情况

        可以看出, 0.0170837-0.01257确实是0.0145137约等于0.0045136(这是因为四舍五入的问题)。

        PS:其实可以直接使用report_delay_calculation -from [get_port d] -to [get_port d]命令报告驱动单元的延迟和转换时间计算情况。

指定库名

        -library选项指定了在哪些链接库中搜索单元。在不使用-library的情况下,DC首先会在所有链接库中与输入端口的操作条件(operating conditions)匹配的库搜索单元,如果找不到,才会去其它链接库搜索单元;在使用-library指定了某些链接库的情况下,DC首先会在这些链接库中与输入端口的操作条件(operating conditions)匹配的库搜索单元,如果找不到,才会去这些链接库中的其他链接库搜索单元。

        -library选项显示地声明了要在哪些链接库中搜索单元,这对于多链接个库中出现多个同名单元的情况有用(尽管这不常见)。

        下面的命令指定使用了typical库中的CLKINVX1单元。

set_driving_cell -lib_cell CLKINVX1 -library typical [get_port d]

指定上升沿、下降沿

         -rise选项用于指定驱动单元使用于端口的上升沿、-fall选项用于指定驱动单元使用于端口的下降沿(注意:不管是什么驱动单元,驱动单元的时序弧都是正单调性)。如果这两个选项都没有指定,延迟同时作用于时钟的上升沿和下降沿(相当于它们同时指定)。

        下面的命令将输入端口上升沿的驱动单元改为CLKINVX2,下降沿的驱动单元依旧是CLKINVX2,如图8所示。

set_driving_cell -rise -lib_cell CLKINVX2 -library typical [get_port d]

图8 端口驱动单元报告

指定最大、最小条件

        -max选项用于指定延迟值作用于最大条件(建立时间分析),-max选项用于指定延迟值作用于最小条件(保持时间分析)。如果这两个选项都没有指定,延迟同时作用于最大条件和最小条件(相当于它们同时指定)。通常情况下,我们会使用-min选项指定驱动能力最强的单元(最快),使用-min选项指定驱动能力最弱的单元(最慢)。

        下面的命令使用-min选项指定驱动能力强的CLKINVX2驱动输入端口d,使用-max选项指定驱动能力强的CLKINVX1驱动输入端口d,如图9所示。

set_driving_cell -min -lib_cell CLKINVX2 [get_port d]
set_driving_cell -max -lib_cell CLKINVX1 [get_port d]

图9 端口驱动单元报告

指定输出引脚

        -pin选项用于指定驱动单元的输出引脚,这对于拥有多个输出引脚的单元很有用,如果使用多个输出引脚的单元而不指定-pin选项,则DC会使用搜索到的第一个输出引脚。

        比如对于一个触发器单元DFFRX1,其拥有两个输出引脚,分别为Q及QN,下面的命令指定以DFFRX1的输出引脚Q驱动输入端口d,如图10所示。

set_driving_cell -lib_cell DFFRX1 -pin QN [get_port d]

图10 端口驱动单元报告

指定输入引脚

        -from_pin选项用于指定驱动单元的输入引脚,这对拥有多个输入引脚的单元很有用,如果使用多个输出引脚的单元而不指定-from_pin选项,则DC会使用搜索到的第一个输入引脚(前提输入输出引脚间有时序弧)。

        比如对于一个单元CMPR42X1,它拥有五个输入端口、三个输出端口,如图11所示。

图11 CMPR42X1单元框图

        下面的命令指定以CMPR42X1的输入端口A,输出端口S作为输入端口d的驱动源,如图12所示。

set_driving_cell -lib_cell CMPR42X1 -from_pin A -pin S [get_port d]

图12 端口驱动单元报告

指定禁止放缩

        -dont_scale选项用于指定,驱动单元的转换时间和延迟不会因为操作环境而被放缩(scale)。放缩指的是当工作环境与特征化条件不同时,转换时间和延迟的计算在最后会被乘以一个因子,如图5、图6、图7中所示的那样。

        使用下面的命令指定上的输入端口d的驱动单元为CLKINVX1并禁止放缩。

set_driving_cell -lib_cell CLKINVX1 -dont_scale [get_port d]

指定设计规则不转移

        现在我们终于开始解决一开始使用命令时的警告问题了,即

Warning: Design rule attributes from the driving cell will be set on the port. (UID-401)

        这是因为默认情况下,驱动单元的设计规则会被复制到输入端口,例如max_fanout、  max_capacitance、max_transition、min_fanout、min_capacitance、min_transition这些属性。而-no_design_rule选项用于禁止这些行为。

        使用下面的命令指定上的输入端口d的驱动单元为CLKINVX1并保证设计规则不转移,此时命令执行后不会出现警告。

set_driving_cell -lib_cell CLKINVX1 -no_design_rule [get_port d]

删除驱动单元

        -none选项用于删除之前指定的驱动单元相关信息,但是这个选项已经过时,尽管它目前仍然起作用,建议使用remove_driving_cell命令替代。

        下面的命令删除了输入端口d上的驱动单元。

set_driving_cell -none [get_port d]

指定上升、下降转换时间

        -input_transition_rise和-input_transition_fall选项用于指定驱动单元输入端上升、下降沿的转换时间,默认情况下,使用输入转换时间0计算输出转换时间和延迟,如图6、图7所示的那样。

        下面的命令指定了驱动单元CLKINVX1的输入上升、下降沿转换时间分别为0.5、0.4。

set_driving_cell -lib_cell CLKINVX1 -input_transition_rise 0.5 -input_transition_fall 0.4 [get_port d]

        下面使用report_delay_calculation -from [get_port d] -to [get_port d]命令报告端口的延迟计算情况,如图13所示。

图13 端口转换时间计算情况

        可以看到对于输入单元下降沿转换时间的计算,使用了指定的输入端上升沿转换时间;对于输入单元上升沿转换时间的计算,使用了指定的输入端下降沿转换时间。也就是说,这里的计算考虑了时序弧的单调性。

​指定驱动能力因子

        -multiply_by选项用于指定一个驱动能力因子,用于模拟驱动减弱或驱动增强,会影响驱动单元延迟和转换时间的计算。

        下面的命令指定了驱动单元CLKINVX1的驱动能力因子为0.5,这代表着最终的计算结果会乘以0.5,如图14、图15所示。

set_driving_cell -lib_cell CLKINVX1 -multiply_by 0.5 [get_port d]

图14 端口延迟计算情况

图15 端口转换时间计算情况

        在使用这个选项是会出现如下警告,代表着这个选项已经过时,即将删除。 

Warning: Starting from 2019.03 release, the 'set_driving_cell' command will no longer  support the '-multiply_by' option (OBS-002)

这篇关于静态时序分析:SDC约束命令set_driving_cell详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740539

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

30常用 Maven 命令

Maven 是一个强大的项目管理和构建工具,它广泛用于 Java 项目的依赖管理、构建流程和插件集成。Maven 的命令行工具提供了大量的命令来帮助开发人员管理项目的生命周期、依赖和插件。以下是 常用 Maven 命令的使用场景及其详细解释。 1. mvn clean 使用场景:清理项目的生成目录,通常用于删除项目中自动生成的文件(如 target/ 目录)。共性规律:清理操作

poj 3159 (spfa差分约束最短路) poj 1201

poj 3159: 题意: 每次给出b比a多不多于c个糖果,求n最多比1多多少个糖果。 解析: 差分约束。 这个博客讲差分约束讲的比较好: http://www.cnblogs.com/void/archive/2011/08/26/2153928.html 套个spfa。 代码: #include <iostream>#include <cstdio>#i

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

poj 3050 dfs + set的妙用

题意: 给一个5x5的矩阵,求由多少个由连续6个元素组成的不一样的字符的个数。 解析: dfs + set去重搞定。 代码: #include <iostream>#include <cstdio>#include <set>#include <cstdlib>#include <algorithm>#include <cstring>#include <cm

poj 3169 spfa 差分约束

题意: 给n只牛,这些牛有些关系。 ml个关系:fr 与 to 牛间的距离要小于等于 cost。 md个关系:fr 与 to 牛间的距离要大于等于 cost。 隐含关系: d[ i ] <= d[ i + 1 ] 解析: 用以上关系建图,求1-n间最短路即可。 新学了一种建图的方法。。。。。。 代码: #include <iostream>#include