(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程

2024-02-23 22:44

本文主要是介绍(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相似对角化 和 对角化 很大程度上是一回事
甚至判断两个矩阵的相似性,也跟对角化有很大关系

参考视频1:https://www.bilibili.com/video/BV1PA411T7b5/?spm_id_from=333.788&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频2:https://www.bilibili.com/video/BV14T4y127jf/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频3:https://www.bilibili.com/video/BV1Js4y1372V/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600


如下图的矩阵其实可以看成一个 “基向量” 变换,它把 (1, 0) 变成 (2, 1),把 (0, 1) 变成 (1, 2)
在这里插入图片描述

同时,我们把自然基下的矢量,使用上述矩阵进行变换时,大部分矢量的方向会被改变,但有部分矢量的方向是不会被改变的,如下图,这类矢量我们就称为特征向量
在这里插入图片描述

平面内还有另一个特征向量 (它总是保持不变吗?还是说只是因为特征值刚好是 1?与原特征向量垂直是必须的吗?)
这两个特征向量,似乎在自然基和变换基下,都是垂直的?
在这里插入图片描述

此时,可以把这两个特征向量作为一组新的基,那么,原来的变换矩阵在这个新的基下的作用就只是把矢量进行伸缩。于是,原来的变换矩阵在这个新的基下的作用就可以使用一个 “对角阵” 来表示
在这里插入图片描述

因此,这个 对角阵 和 原来的变换矩阵 是相似的。
X 和 X^(-1) 就是基变换矩阵,它们由 自然基 下的特征向量构成
一个更好的理解是,原来的变换矩阵可以拆分成:
1.先把自然基下的矢量映射到 “特征向量构成的一组基” 上
2.在 “特征向量构成的一组基” 上对矢量进行变换 (实际上就是伸缩)
3.再把变换后的矢量映射回 自然基 上
在这里插入图片描述

当我们把 基变换矩阵 的顺序改变时,对角矩阵的顺序也需要变换
在这里插入图片描述

此时就可以明白,一个矩阵能否相似对角化的充要条件是 “它的特征向量能否构成一组基”
在这里插入图片描述
构成一组基的条件:即这组特征向量是线性无关的

更精确的说法:矩阵A 有 n 个线性无关的特征向量
在这里插入图片描述

以下是一个小的引理
若有 n 个不同的特征值 =====> 则 A 有 n 个线性无关的特征向量 (不同特征值对应的特征向量线性无关)
NOTE: 反过来不一定成立哦!
在这里插入图片描述

如下图,是一个例子:
若三阶矩阵有三个特征值,那么它就可对角化,因为它拥有三个线性无关的特征向量
若只有 1, 2, 2,那就要重点关注 (lamda = 2) 所对应的特征向量,若它们线性无关,则可对角化;否则不行
在这里插入图片描述


以下是一个求特征值、特征向量,从而把矩阵相似对角化的例子:
在这里插入图片描述


当 lamda1 = lamda2 = 2 时,我们发现求出的矩阵只有一个非零行,那么也就是说它的 “自由未知量” 是 2。
这其实暗含了 “我们能够得到两个线性无关非零解” 的意思,也就说这个矩阵是可以相似对角化的
在这里插入图片描述

这篇关于(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740164

相关文章

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

作业提交过程之HDFSMapReduce

作业提交全过程详解 (1)作业提交 第1步:Client调用job.waitForCompletion方法,向整个集群提交MapReduce作业。 第2步:Client向RM申请一个作业id。 第3步:RM给Client返回该job资源的提交路径和作业id。 第4步:Client提交jar包、切片信息和配置文件到指定的资源提交路径。 第5步:Client提交完资源后,向RM申请运行MrAp

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <

XTU 1237 计算几何

题面: Magic Triangle Problem Description: Huangriq is a respectful acmer in ACM team of XTU because he brought the best place in regional contest in history of XTU. Huangriq works in a big compa

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

zoj 1721 判断2条线段(完全)相交

给出起点,终点,与一些障碍线段。 求起点到终点的最短路。 枚举2点的距离,然后最短路。 2点可达条件:没有线段与这2点所构成的线段(完全)相交。 const double eps = 1e-8 ;double add(double x , double y){if(fabs(x+y) < eps*(fabs(x) + fabs(y))) return 0 ;return x + y ;