(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程

2024-02-23 22:44

本文主要是介绍(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相似对角化 和 对角化 很大程度上是一回事
甚至判断两个矩阵的相似性,也跟对角化有很大关系

参考视频1:https://www.bilibili.com/video/BV1PA411T7b5/?spm_id_from=333.788&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频2:https://www.bilibili.com/video/BV14T4y127jf/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600

参考视频3:https://www.bilibili.com/video/BV1Js4y1372V/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600


如下图的矩阵其实可以看成一个 “基向量” 变换,它把 (1, 0) 变成 (2, 1),把 (0, 1) 变成 (1, 2)
在这里插入图片描述

同时,我们把自然基下的矢量,使用上述矩阵进行变换时,大部分矢量的方向会被改变,但有部分矢量的方向是不会被改变的,如下图,这类矢量我们就称为特征向量
在这里插入图片描述

平面内还有另一个特征向量 (它总是保持不变吗?还是说只是因为特征值刚好是 1?与原特征向量垂直是必须的吗?)
这两个特征向量,似乎在自然基和变换基下,都是垂直的?
在这里插入图片描述

此时,可以把这两个特征向量作为一组新的基,那么,原来的变换矩阵在这个新的基下的作用就只是把矢量进行伸缩。于是,原来的变换矩阵在这个新的基下的作用就可以使用一个 “对角阵” 来表示
在这里插入图片描述

因此,这个 对角阵 和 原来的变换矩阵 是相似的。
X 和 X^(-1) 就是基变换矩阵,它们由 自然基 下的特征向量构成
一个更好的理解是,原来的变换矩阵可以拆分成:
1.先把自然基下的矢量映射到 “特征向量构成的一组基” 上
2.在 “特征向量构成的一组基” 上对矢量进行变换 (实际上就是伸缩)
3.再把变换后的矢量映射回 自然基 上
在这里插入图片描述

当我们把 基变换矩阵 的顺序改变时,对角矩阵的顺序也需要变换
在这里插入图片描述

此时就可以明白,一个矩阵能否相似对角化的充要条件是 “它的特征向量能否构成一组基”
在这里插入图片描述
构成一组基的条件:即这组特征向量是线性无关的

更精确的说法:矩阵A 有 n 个线性无关的特征向量
在这里插入图片描述

以下是一个小的引理
若有 n 个不同的特征值 =====> 则 A 有 n 个线性无关的特征向量 (不同特征值对应的特征向量线性无关)
NOTE: 反过来不一定成立哦!
在这里插入图片描述

如下图,是一个例子:
若三阶矩阵有三个特征值,那么它就可对角化,因为它拥有三个线性无关的特征向量
若只有 1, 2, 2,那就要重点关注 (lamda = 2) 所对应的特征向量,若它们线性无关,则可对角化;否则不行
在这里插入图片描述


以下是一个求特征值、特征向量,从而把矩阵相似对角化的例子:
在这里插入图片描述


当 lamda1 = lamda2 = 2 时,我们发现求出的矩阵只有一个非零行,那么也就是说它的 “自由未知量” 是 2。
这其实暗含了 “我们能够得到两个线性无关非零解” 的意思,也就说这个矩阵是可以相似对角化的
在这里插入图片描述

这篇关于(done) 矩阵的对角化,以及是否可对角化的判断、还有对角化的本质。相似对角化计算过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/740164

相关文章

Spring boot整合dubbo+zookeeper的详细过程

《Springboot整合dubbo+zookeeper的详细过程》本文讲解SpringBoot整合Dubbo与Zookeeper实现API、Provider、Consumer模式,包含依赖配置、... 目录Spring boot整合dubbo+zookeeper1.创建父工程2.父工程引入依赖3.创建ap

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Java进程异常故障定位及排查过程

《Java进程异常故障定位及排查过程》:本文主要介绍Java进程异常故障定位及排查过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、故障发现与初步判断1. 监控系统告警2. 日志初步分析二、核心排查工具与步骤1. 进程状态检查2. CPU 飙升问题3. 内存

SpringBoot整合liteflow的详细过程

《SpringBoot整合liteflow的详细过程》:本文主要介绍SpringBoot整合liteflow的详细过程,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋...  liteflow 是什么? 能做什么?总之一句话:能帮你规范写代码逻辑 ,编排并解耦业务逻辑,代码

Go语言中nil判断的注意事项(最新推荐)

《Go语言中nil判断的注意事项(最新推荐)》本文给大家介绍Go语言中nil判断的注意事项,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.接口变量的特殊行为2.nil的合法类型3.nil值的实用行为4.自定义类型与nil5.反射判断nil6.函数返回的

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

MySQL中的InnoDB单表访问过程

《MySQL中的InnoDB单表访问过程》:本文主要介绍MySQL中的InnoDB单表访问过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、访问类型【1】const【2】ref【3】ref_or_null【4】range【5】index【6】

浏览器插件cursor实现自动注册、续杯的详细过程

《浏览器插件cursor实现自动注册、续杯的详细过程》Cursor简易注册助手脚本通过自动化邮箱填写和验证码获取流程,大大简化了Cursor的注册过程,它不仅提高了注册效率,还通过友好的用户界面和详细... 目录前言功能概述使用方法安装脚本使用流程邮箱输入页面验证码页面实战演示技术实现核心功能实现1. 随机

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

CSS3打造的现代交互式登录界面详细实现过程

《CSS3打造的现代交互式登录界面详细实现过程》本文介绍CSS3和jQuery在登录界面设计中的应用,涵盖动画、选择器、自定义字体及盒模型技术,提升界面美观与交互性,同时优化性能和可访问性,感兴趣的朋... 目录1. css3用户登录界面设计概述1.1 用户界面设计的重要性1.2 CSS3的新特性与优势1.