分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测

本文主要是介绍分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测

目录

    • 分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测。

2.自带数据,多输入,单输出,多分类。图很多、混淆矩阵图、预测效果图等等
3.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2023及以上。
4.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

CWT-DSCNN-MSA是一种基于时序特征和连续小波变换(CWT)时频图的双流卷积融合注意力机制的分类预测模型。下面我将逐步解释这个模型的各个组成部分:

时序特征:该模型接受时序数据作为输入,例如时间序列信号。时序特征可以是一维的,表示数据随时间变化的情况。

连续小波变换(CWT)时频图:CWT是一种用于分析信号在时域和频域上的变化的数学工具。在CWT中,信号通过一组不同尺度的小波基函数进行变换,得到其在不同频率上的表示。CWT可以将时域和频域的信息结合起来,生成时频图,用于描述信号的时频特性。

双流卷积融合:为了充分利用时序特征和CWT时频图的信息,该模型采用了双流的结构。其中一个流处理原始的时序特征,使用卷积神经网络(CNN)进行特征提取。另一个流处理CWT时频图,同样使用CNN进行特征提取。这样可以分别捕捉时序特征和时频特征。

注意力机制:为了进一步提升模型性能,该模型引入了注意力机制。在卷积融合的阶段,注意力机制可以学习数据的重要性权重,以便更好地融合两个流的特征表示。通过注意力机制,模型可以自动关注对分类任务更有贡献的特征。

分类预测:在得到融合后的特征表示之后,通常会添加全连接层和softmax激活函数,以进行最终的分类预测。softmax函数将模型的输出映射为表示不同类别概率的向量。

综上所述,CWT-DSCNN-MSA模型通过结合时序特征和CWT时频图,利用双流卷积融合和注意力机制,能够有效地进行分类预测。这种模型在处理时序数据且需要考虑时频特性的分类问题中可能具有较好的性能。

程序设计

  • 完整程序和数据私信博主回复Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测
%%  参数设置
%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);% %%  数据排序
% [T_train, index_1] = sort(T_train);
% [T_test , index_2] = sort(T_test );
% 
% T_sim1 = T_sim1(index_1);
% T_sim2 = T_sim2(index_2);%%  性能评价
error1 = sum((T_sim1 == T_train))/M * 100 ;
error2 = sum((T_sim2 == T_test)) /N * 100 ;%%  绘图
figure()         
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
gridfigure
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

这篇关于分类预测 | Matlab实现CWT-DSCNN-MSA基于时序特征、cwt小波时频图的双流卷积融合注意力机制的分类预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739515

相关文章

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

一文教你使用Python实现本地分页

《一文教你使用Python实现本地分页》这篇文章主要为大家详细介绍了Python如何实现本地分页的算法,主要针对二级数据结构,文中的示例代码简洁易懂,有需要的小伙伴可以了解下... 在项目开发的过程中,遇到分页的第一页就展示大量的数据,导致前端列表加载展示的速度慢,所以需要在本地加入分页处理,把所有数据先放

SpringMVC前后端传值的几种实现方式

《SpringMVC前后端传值的几种实现方式》本文主要介绍了SpringMVC前后端传值的方式实现,包括使用HttpServletRequest、HttpSession、Model和ModelAndV... 目录一、从Controller层到JSP界面1、使用HttpServletRequest的方式2、使

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

SpringBoot整合DeepSeek实现AI对话功能

《SpringBoot整合DeepSeek实现AI对话功能》本文介绍了如何在SpringBoot项目中整合DeepSeekAPI和本地私有化部署DeepSeekR1模型,通过SpringAI框架简化了... 目录Spring AI版本依赖整合DeepSeek API key整合本地化部署的DeepSeek

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表