【数据结构】顺序表实现的层层分析!!

2024-02-23 15:44

本文主要是介绍【数据结构】顺序表实现的层层分析!!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
关注小庄 顿顿解馋◍˃ ᗜ ˂◍

引言:本篇博客我们来认识数据结构其中之一的顺序表,我们将认识到什么是顺序表以及顺序表的实现,请放心食用~

文章目录

  • 一.什么是顺序表
    • 🏠 线性表
    • 🏠 顺序表
  • 二.顺序表的实现
    • 🏠 静态顺序表
    • 🏠 动态顺序表
      • 接口的实现
  • 三.顺序表的优缺点

一.什么是顺序表

🏠 线性表

线性表是n个有相同特性数据元素的有限序列,是一种广泛使用的数据结构,常用的数据结构有链表,顺序表,队列和栈等

特点: 线性表在逻辑结构上是线性的(一条连续的直线),但在物理结构不一定连续

理解:比如我们在排队时,我们脑海中认为我们队伍应该是排成一条直线的,实际上也应该如此,这里就是类似我们待会要讲的顺序表,但有有时不免有人会插队三五成群排在队伍左右边,类似我们线性表中的链表。

🏠 顺序表

顺序表是由一块连续的物理内存空间构成的,也就是说它的逻辑结构是线性,物理结构也是线性

那有什么结构是连续的一块的内存空间呢?

这里我们就可以用我们的数组来实现顺序表,你也可以理解为顺序表本质就是数组

二.顺序表的实现

我们一般用顺序表实现对我们的数据进行增删查改操作,来很好地运用我们的数据,顺序表一般分为静态顺序表和动态顺序表。

  • 顺序表结构的分析
    我们既然知道顺序表的本质是数组,那我们需要定义一个数组;
    其次我们要对我们的数据进行增删查改操作,那我们进行增的时候得知道我们空 间有多少容量吧,同时我们进行删除操作时也需要有“边界感”,如果不知道顺序表有没有数据就麻烦了。

因此,我们可以定义一个size来表示有效数据个数,用一个capacity代表顺序表的容量
在这里插入图片描述
注:这里由于数组下标是从0开始,所以我们的size要往前一步跟下标同步

🏠 静态顺序表

静态顺序表:使用定长数组来存储元素

静态顺序表的封装

//静态顺序表
typedef int Datatype;//相同类型元素 方便不同数据类型直接替换
#define N 100
struct Seqlist
{Datatype arr[N];int size;int capacity;
};

缺点: 静态顺序表的数组长度是限定的,导致无法灵活存放数据。空间大了导致浪费,空间小了导致数据丢失。

因此,在实际中,我们采用动态顺序表来操作我们的数据

🏠 动态顺序表

C语言动态内存管理工作是给我们程序员做的,给我们提供更多的灵活性,由程序员决定空间何时申请和释放。我们可利用这特点实现动态顺序表

//动态顺序表
typedef int Datatype; 
typedef struct Seqlist
{Datatype * arr;int size;int capacity;
}Seqlist;

接口的实现

  • 顺序表的初始化
void InitSeqlist(Seqlist* ps)
{ps->arr = NULL;ps->size = ps->capacity = 0;
}

注:这里要传结构体指针,通过传址调用来修改size和capacity

  • 顺序表的打印
    这里就体现size的用处了,从下标0开始,到size就停止打印
void PrintSeqlist(Seqlist* ps)
{assert(ps->size != 0);for (int i = 0; i < ps->size; i++){printf("%d ", ps->arr[i]);}
}
  • 顺序表的头插和尾插
    在这里插入图片描述

顺序表的头插和尾插我们需要解决容量问题
对于空顺序表和空间足够的顺序表我们自然无需担心,但对于size==capacity时的顺序表就需要扩容了,那该怎么扩呢?

我们有三种扩容方式:

  1. 一次扩容一个空间
  2. 一次扩容固定大小空间
  3. 成倍数扩容(1.5或2倍)
    理解:对于第一种扩容方式,有限次数扩容还好,但多次扩容会降低效率;对于第二种空间给少会数据丢失,给多会空间浪费
    最好方法就是成倍扩容,参考文章数组成倍扩容原因

因此进行尾插和头插前要判断是否扩容,不够就成倍扩

void Capacity(Seqlist* ps)
{assert(ps);int newcapacity = 0;if (ps->capacity == ps->size){newcapacity = ps->capacity == 0 ? 4 : 2 * newcapacity;int* temp = (int*)realloc(ps->arr,newcapacity * sizeof(int));if(NULL == temp){perror("realloc failed");exit(1);}ps->arr = temp;}ps->capacity = newcapacity;
}

尾插直接让size下标的空间用来赋值就可以了

void Pushtail(Seqlist* ps, Datatype x)
{assert(ps);//判断是否要扩容Capacity(ps);ps->arr[ps->size++] = x;
}

注:插入数据,size代表的有效数据个数也要增加

头插要先实现数据的左移再插入

void Pushhead(Seqlist* ps, Datatype x)
{assert(ps);//判断容量问题Capacity(ps);for (int i = ps->size; i > 0; i--){ps->arr[i] = ps->arr[i - 1];}ps->arr[0] = x;ps->size++;
}
  • 顺序表的头删和尾删
    请思考一个问题,清除数据,是否一定要删除这个数据?
    当然不是的,我们用不了这个数据使它失效也是可以的

尾删

void Deltail(Seqlist* ps)
{assert(ps->size);assert(ps);ps->size--;
}

头删直接左移数据再使数据无效即可

void Delhead(Seqlist* ps)
{assert(ps->size);assert(ps);for (int i = 0; i < ps->size - 1; i++){ps->arr[i] = ps->arr[i + 1];}ps->size--;//删除数据不代表一定要删除
}

注:删除数据,要使size代表的有效数据个数对应减少

  • 指定位置删除数据和指定位置之前插入数据

删除数据注意size–就可以了,直接循环遍历到pos位置

void PosDel(Seqlist* ps, int pos)
{assert(ps);assert(ps->size);assert(pos > 0&&pos<=ps->size);//pos等于sizeif (pos == ps->size){ps->size--;return;}for (int i = pos - 1; i < ps->size - 1; i++){ps->arr[i] = ps->arr[i + 1];}ps->size--;
}

注意 pos与下标差了1 还有pos的合法性

指定位置插入数据也是可以按照循环移动数据但要注意容量问题

void PosPush(Seqlist* ps, Datatype x, int pos)
{assert(ps);//要确保插入位置的合法性assert(pos >= 0 && pos < ps->size);int i = 0;Capacity(ps);for (i = ps->size; i > pos-1; i--){ps->arr[i] = ps->arr[i - 1];}ps->arr[pos-1] = x;ps->size++;
}

注意 pos合法性和下标关系

延伸:对于指定位置的插入和删除也可以采用memmove来实现

//顺序表的指定位置插入(memmove实现)
void SLInsert1(SL* ps, int pos, Datatype x)
{assert(ps);//要确保插入位置的合法性assert(pos >= 0 && pos < ps->size);Datatype arr2[1] = { 0 };arr2[0] = x;memmove(ps->arr+pos+1,ps->arr+pos,(ps->size-pos)*sizeof(Datatype));memmove(ps->arr + pos, arr2, 4);ps->size++;//记得插入后size要增加
}//顺序表指定位置的删除(memmove)
void SLErase1(SL* ps, int pos)
{assert(ps);assert(pos >= 0 && pos <= ps->size);memmove(ps->arr+pos,ps->arr+pos+1,(ps->size-pos-1)*sizeof(Datatype));ps->size--;
}
  • 查找数据
    直接遍历即可
void SLFind(Seqlist* ps, Datatype x)
{assert(ps);assert(ps->size);for (int i = 0; i < ps->size; i++){if (ps->arr[i] == x){printf("找到了下标为%d", i);return;}}printf("没找到!");return;
}

三.顺序表的优缺点

到这里我们的顺序表基本实现完了,我们分析一下他的优缺点

优点
1.利用数组下标支持随机访问
2.数组空间连续,cpu高速缓存命中率高

缺点
1.进行插入和删除时移动数据效率低下
2.扩容可能造成空间浪费和数据丢失
3.扩容要申请空间拷贝数据,有不小的消耗

总结:顺序表适用于频繁访问和元素高效存储的应用场景

那有什么方法可以解决顺序表暴露的问题呢?请听下回的链表~


本次分享到这就结束了,不妨来个一键三连呀~

这篇关于【数据结构】顺序表实现的层层分析!!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739118

相关文章

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

一文教你使用Python实现本地分页

《一文教你使用Python实现本地分页》这篇文章主要为大家详细介绍了Python如何实现本地分页的算法,主要针对二级数据结构,文中的示例代码简洁易懂,有需要的小伙伴可以了解下... 在项目开发的过程中,遇到分页的第一页就展示大量的数据,导致前端列表加载展示的速度慢,所以需要在本地加入分页处理,把所有数据先放

SpringMVC前后端传值的几种实现方式

《SpringMVC前后端传值的几种实现方式》本文主要介绍了SpringMVC前后端传值的方式实现,包括使用HttpServletRequest、HttpSession、Model和ModelAndV... 目录一、从Controller层到JSP界面1、使用HttpServletRequest的方式2、使

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运