本文主要是介绍【深度学习】基于LSTM时间序列的股票价格预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
【参考:python深度学习之基于LSTM时间序列的股票价格预测_柳小葱的博客-CSDN博客】
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
导入数据
data=pd.read_csv("zgpa_train.csv")
df=pd.DataFrame(data,columns=['date','close']) #只取日期和收盘价两列
数据标准化
from sklearn.preprocessing import StandardScalerst=StandardScaler()dataset_st=st.fit_transform(X=dataset.reshape(-1,1)) # shape (n_samples, n_features)
划分训练集和测试集
train_size=int(len(dataset_st)*0.7)
test_size=int(len(dataset_st))-train_size
train,test=dataset_st[0:train_size],dataset_st[train_size:]
创建时间序列数据样本
def data_set(dataset,lookback):""":param dataset: ndarray:param lookback: 单个序列的长度:return:"""dataX,dataY=[],[]for i in range(0,len(dataset)-lookback-1):temp=dataset[i: i+lookback ] # 前 lookback步dataX.append(temp)dataY.append(dataset[i+lookback])# 第 lookback步return np.array(dataX),np.array(dataY)
lookback=2
trainX,trainY=data_set(train,lookback)
testX,testY=data_set(test,lookback)
建立LSTM模型
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout, GRU
from tensorflow.keras.optimizers import SGD # 可以忽略警告错误model = Sequential()
# LSTM 第一层
model.add(LSTM(128, return_sequences=True, # 是返回输出序列中的最后一个输出,还是全部序列True。input_shape=(trainX.shape[1], 1))) # (sequence_length, features)
model.add(Dropout(0.2))# LSTM 第二层
model.add(LSTM(128, return_sequences=True))
model.add(Dropout(0.2))# LSTM 第三层
model.add(LSTM(128))
model.add(Dropout(0.2))# Dense层
model.add(Dense(units=1))# 模型编译
model.compile(optimizer='rmsprop', loss='mse')# 模型训练
model.fit(trainX, trainY, epochs=20, batch_size=32)
做出预测
pred_st=model.predict(testX)
pred=st.inverse_transform(pred_st) # 进行反归一化
testY2=st.inverse_transform(testY) # 进行反归一化 因为前面进行了归一化
def plot_predictions(test_result, predict_restult):"""test_result: 真实值predict_result: 预测值"""plt.plot(test_result, color='red', label='test')plt.plot(predict_restult, color='blue', label="prdict")plt.xlabel("Time")plt.ylabel("Close Price")plt.legend() # 给图加上图例plt.show()
plot_predictions(testY2,pred) # 画出图像
这篇关于【深度学习】基于LSTM时间序列的股票价格预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!