库、表、超级表是什么?怎么用?60后大叔抽丝剥茧讲清TDengine的数据建模

本文主要是介绍库、表、超级表是什么?怎么用?60后大叔抽丝剥茧讲清TDengine的数据建模,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视频教程第二弹,快速理清TDengine中的抽象概念,并学会规划生产场景中的数据模型。

点击链接,获取视频教程。

欢迎来到物联网的数据世界

在典型的物联网场景中,一般有多种不同类型的采集设备,采集多种不同的物理量,同一种采集设备类型,往往有多个设备分布在不同的地点,系统需对各种采集的数据汇总,进行计算和分析对于同一类设备,其采集的数据都是很规则的。

本文我们以智能电表(采集量为电流、电压)为例,探讨如何在TDengine中建库、建超级表、建表。

假设每个智能电表采集电流、电压两个量,其采集的数据如下图所示。   

每一条记录都有设备ID,时间戳,采集的物理量(如上图中的电流、电压),还有与每个设备相关的静态标签(如上图中的位置Location和分组groupId)。每个设备是受外界的触发,或按照设定的周期采集数据。采集的数据点是时序的,是一个数据流。

那么TDengine如何抽象这些物联网数据呢?

这里,需要提到TDengine的关键创新点——一个采集点一张表。同一类型的采集点用一个超级表来描述,也就是一个表结构Schema和静态标签Schema 。就上图来说,电表ID作为子表名(d1001, d1002, d1003, d1004等),动态采集的物理量作为各字段,静态属性(Location和groupId)作为子表标签。利用超级表作为模板,生成子表 – 对应各采集点,有了超级表,极大地方便了同类采集点的数据检索、查询、聚合。

这种设计有几大优点:

  • 能保证一个采集点的数据在存储介质上是以块为单位连续存储的。如果读取一个时间段的数据,它能大幅减少随机读取操作,成数量级的提升读取和查询速度。

  • 由于不同采集设备产生数据的过程完全独立,每个设备的数据源是唯一的,一张表也就只有一个写入者,这样就可采用无锁方式来写,写入速度就能大幅提升。

  • 对于一个数据采集点而言,其产生的数据是时序的,因此写的操作可用追加的方式实现,进一步大幅提高数据写入速度。

如果采用传统的方式,将多个设备的数据写入一张表,由于网络延时不可控,不同设备的数据到达服务器的时序是无法保证的,写入操作是要有锁保护的,而且一个设备的数据是难以保证连续存储在一起的。采用一个数据采集点一张表的方式,能最大程度的保证单个数据采集点的插入和查询的性能是最优的。

数据建模的基本方法

TDengine采用关系型数据模型,需要建库、建表。因此对于一个具体的应用场景,需要考虑库的设计,超级表和普通表的设计。

CREATE DATABASE dbnameUSE dbnameCREATE TABLE stbname (ts timestamp, other fields…) tags ( tag fields)CREATE TABLE tbname using stbname tags(具体标签值)INSERT INTO tbname VALUES(now, values…)

创建库

不同类型的数据采集点往往具有不同的数据特征,包括数据采集频率的高低,数据保留时间的长短,副本的数目,数据块的大小等。为让各种场景下TDengine都能最大效率的工作,建议将不同数据特征的表创建在不同的库里,因为每个库可以配置不同的存储策略。

创建一个库时,除SQL标准的选项外,应用还可以指定保留时长、副本数、内存块个数、时间精度、文件块里最大最小记录条数、是否压缩、一个数据文件覆盖的天数等多种参数。比如建议为数据特征相同的表创建一个库,每个库可以配置不同的存储策略。

CREATE DATABASE power KEEP 365;

上述将创建一个名为power的库,这个库的数据将保留365天。更多参数及语法见:

https://www.taosdata.com/cn/documentation20/taos-sql/

创建库之后,需要使用SQL命令USE将当前库切换过来,例如:

USE power;
将当前操作库换为power。还可使用“库名.表名”来指定操作的库、表的名字。

引入超级表

一个数据采集点一张表, 意味着1000万智能电表对应1000万张表,一个物联网系统,往往存在海量同类型的数据采集点。如何对这么多张表进行操作就是一个巨大的挑战。为方便对同类型多表的操作,TDengine引入超级表。

创建超级表时,需提供:表名、表结构Schema、标签Schema。

 CREATE TABLE meters (ts timestamp, current float, voltage int) TAGS (location binary(64), groupdId int);

超级表的列分两部分:动态部分,静态部分。

动态部分是采集的数据,第一列为时间戳(ts),其他列为采集的物理量(current, voltage)。

静态部分指采集点的静态属性,一般作为标签。如采集点的地理位置、设备型号、设备组、管理员ID等。

标签可以事后增加、删除、修改。

TDengine支持以下数据类型。

深入理解超级表

同时采集同表:一张超级表里,包含的采集物理量必须是同时采集的,也就是说时间戳都是相同的。

对一个类型的设备,可能存在多组物理量,每组物理量并不是同时采集的,则需要为每组物理量单独建一个超级表。因此一个类型的设备,可能需要建立多个超级表。

系统有N个不同类型的设备,就需要建立至少N个超级表。

一个系统可以有多个DB库,一个DB库里可以有一到多个超级表。

创建表/子表

TDengine对每个数据采集点需要独立建表;因为源于超级表(meters)创建而成,也称子表(d1001);创建时,需要使用超级表做模板,同时指定标签的具体值;一个超级表,可包含若干子表,子表数量没有限制。

CREATE TABLE d1001 USING meters TAGS ("Beijing.Chaoyang", 2);
d1001是子表名,meters是超级表名,紧跟Location的标签值”Beijing.Chaoyang",groupId的标签值2。在创建表/子表时,需指定标签值,事后也可修改;建议将数据采集点的全局唯一ID作为子表名(如设备序列号)。

子表自动建表 

在某些特殊场景中,用户在写数据时,并不确定某个子表是否存在。此时,可使用自动建表语法来创建不存在的表,若该表已存在则不会建立新表。

INSERT INTO d1001 USING meters TAGS ("Beijng.Chaoyang", 2) VALUES (now, 10.2, 219);

上述SQL语句将记录(now, 10.2, 219) 插入进表d1001,如果表d1001还未创建,则使用超级表meters做模板自动创建,同时打上标签值“Beijing.Chaoyang", 2。

多列模型 vs 单列模型

TDengine既支持多列模型,也支持单列模型。

  • 多列模型:只要物理量是同一数据采集点同时采集的,这些量就可以作为不同列放在一张超级表里。

  • 单列模型:每个物理量都单独建表。比如电流、电压两个量,就建两张超级表。

我们建议:尽可能采用多列模型,因为插入效率以及存储效率更高;对于有些场景,一个采集点的物理量的种类经常变化,这时可采用单列模型。

新能源汽车示例

场景及建模分析

  • 某车企拟对其生产、销售的新能源汽车进行追踪分析;

  • 每辆车配置了远程采集终端,采集车辆状态信息:位置(经纬度)、车速、电池温度、电池电流、环境温度、轮胎胎压;

  • 后台统计分析需要按:车型、销售区域、销售员、电池包容量、电机功率进行分类聚合;

  • 6个采集量中前4个为同时采集,将其放入一张超级表 – vehicle_main, 其余2个测点,温度与胎压采集的频率完全不一样,分别创建2个超级表 – vehicle_temp, vehicle_tire;

  • 每辆车有唯一编码VIN,采用该编码与超级表的表名前缀作为唯一表名。

SQL语句示例

CREATE DATABASE nev KEEP 3650;USE nev;CREATE TABLE vehicle_main (ts timestamp, longitude double, latitude double, vspeed int, btemp int, bcurrent int) TAGS (vin binary(30), model binary(20), szone binary(30), sales int, bcapacity float, mpower float);CREATE TABLE vmTS8392EGV062192009 USING vehicle_main TAGS ("TS8392EGV062192009", "GTS7180", "Beijing.haidian", "10060089", 86.0, 125.5);
CREATE TABLE vehicle_temp (ts timestamp, vtemp int) TAGS (vin binary(30));CREATE TABLE vtpTS8392EGV062192009 USING vehicle_vtemp TAGS ("TS8392EGV062192009");CREATE TABLE vehicle_tire (ts timestamp, vpressure int) TAGS (vin binary(30));CREATE TABLE vtrTS8392EGV062192009 USING vehicle_vtire TAGS ("TS8392EGV062192009");
//查询指定车辆最近10天的运行轨迹SELECT ts, longtitude, latitude FROM vtrTS8392EGV062192009 where ts >now -10d
//按车型查询平均车速、平均动力电池温度、平均放电电流SELECT AVG(vspeed), AVG(btemp), AVG(bcurrent) FROM vehicle_main GROUP BY model

相信到这里,你已经完全理清了TDengine中库、表、超级表的概念,可以上手操作了!

关注公众号TDengine,后台回复“1203”,获取本教程对应PPT。

这篇关于库、表、超级表是什么?怎么用?60后大叔抽丝剥茧讲清TDengine的数据建模的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737903

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

Oracle存储过程里操作BLOB的字节数据的办法

《Oracle存储过程里操作BLOB的字节数据的办法》该篇文章介绍了如何在Oracle存储过程中操作BLOB的字节数据,作者研究了如何获取BLOB的字节长度、如何使用DBMS_LOB包进行BLOB操作... 目录一、缘由二、办法2.1 基本操作2.2 DBMS_LOB包2.3 字节级操作与RAW数据类型2.