步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法

本文主要是介绍步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法

  • 前言
    • 基本信息
    • 前言说明
  • 8.2 位置定位精度的解决方法
    • 1 . 驱动电路的改善
      • (1) 额定电压(电流)驱动:
      • (2) 2相激磁驱动:
      • (3) 多步进位置定位:
    • 2 . 电机的改善
      • (1) 微调定子结构的改善:
      • (2) 三相HB型高分辨率电机的改善:
      • (3) RM型细分时的改善:

前言

基本信息

名称描述说明
教材名称步进电机应用技术
作者坂本正文
译者王自强

前言说明

根据我读的《步进电机应用技术》这本书,进行的学习过程中的知识记录和心得体会的记录。

8.2 位置定位精度的解决方法

1 . 驱动电路的改善

(1) 额定电压(电流)驱动:

  参看图6.8,从额定电压降低电压来驱动步进电机,发现位置定位精度变差。
  例如:在空载时,用编码器作为负载,在额定电压(电流)时的精度与低于额定电压(电流)比较,精度变化较大。如图6.8所示,齿槽转矩使特性畸变的程度依据所加电压而不同,电压越低,齿槽转矩影响越明显。作者经验认为角度精度太差是很麻烦的,会引起测量电压(电流)不准。大家会注意到,转矩与电压有一定关系,而此关系如不同,会使空载时的角度精度变得很差或成为盲点。

(2) 2相激磁驱动:

  1相激磁驱动定子齿与转子齿作位置定位。相对2相激磁,由定子的2个相绕组激磁,转子齿磁场与定子磁场平衡,作位置定位。因1相激磁驱动吋,其误差精度为各定子相的本身机械精度,而2相激磁误差,由多极位置决定,误差有所缓解,精度变好。特别是纵列型的两相PM型步进电机,1相激磁与2相激磁比较,1相激磁精度会差一些。

(3) 多步进位置定位:

  两相步进电机时以2或4步进位置定位驱动;三相步进电机3或6步进位置定位驱动。如图6.15及6. 16是两相HB型步进电机的例子,如每4步进位置定位,精度大幅提高。
  例如,每1. 8°位置定位时,1. 8°并非使用全步进,而是使用0. 9°的步进电机,以2步进驱动1. 8°位置定位,全步进选择0. 6°的步进电机,3步进驱动有0.6°X3 =1. 8°的驱动方式.此种方式可以大大提高精度。其原因见第7章的式(7. 1)〜式(7. 3)及图7. 1。

2 . 电机的改善

(1) 微调定子结构的改善:

  已知定子的微调结构能改善位置定位精度。以两相电机为例,微调结构,可以降低齿槽转矩,距角特性变为正弦波。三相HB型1.2°的步进电机,六主极无微调,与12主极有微调的全步进驱动时的位置精度比较如图8. 20所示,1/8细分驱动时的位置定位精度比较如图8.21所示。
  三相12主极微调结构步进电机全步进时,位置定位精度可以改善士2%以内。在细分时,微调结构精度提高近50%。细分步距角精度比全步距角运行的精度大。步距采用8分割时,步距角为1. 278 = 0. 15%以此作为控制计算基准,其精度值当然比全步距角时要高。

(2) 三相HB型高分辨率电机的改善:

  可以参照7. 2节中的“高分辨率电机的选用”的详细说明。三相HB型步进电机有2相1. 8°的1/3,即0.6°的高分辨率电机,由于驱动芯片可以在市场上买到,所以可以很容易地实现高精度位置定位。
在这里插入图片描述
在这里插入图片描述

(3) RM型细分时的改善:

  以HB型步进电机细分的角度,用于位置定位时,其精度会有问题。 RM型10细分位置定位时,计算出的位置是线性变化的,详细见第2章的图2. 42细分时的角度精度比较。

这篇关于步进电机基础(8.4)-步进电机的问题解决方案-位置定位精度的解决方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737813

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

如何解决线上平台抽佣高 线下门店客流少的痛点!

目前,许多传统零售店铺正遭遇客源下降的难题。尽管广告推广能带来一定的客流,但其费用昂贵。鉴于此,众多零售商纷纷选择加入像美团、饿了么和抖音这样的大型在线平台,但这些平台的高佣金率导致了利润的大幅缩水。在这样的市场环境下,商家之间的合作网络逐渐成为一种有效的解决方案,通过资源和客户基础的共享,实现共同的利益增长。 以最近在上海兴起的一个跨行业合作平台为例,该平台融合了环保消费积分系统,在短

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k