《初阶数据结构》尾声

2024-02-23 02:04
文章标签 数据结构 初阶 尾声

本文主要是介绍《初阶数据结构》尾声,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言:

《快速排序(非递归)》:

《归并排序》:

《归并排序(非递归)》:

《计数排序》:

对于快速排序的优化:

分析:

总结:


前言:

上一篇blog重点讲解了《选择排序》《插入排序》,重点介绍了快速排序的三种方法,这篇blog主要讲解《归并排序》以及它的非递归使用方法,最后还会再补充一个计数排序。

上一篇的blog:《插入排序》与《选择排序》-CSDN博客

《快速排序(非递归)》:

typedef int STDataType;typedef struct Stack
{STDataType* a;int top;int capacity;
}ST;void QuickSortNonR(int* a, int begin, int end)
{ST s;STInit(&s);STPush(&s, end);STPush(&s, begin);while (!STEmpty(&s)){int left = STTop(&s);STPop(&s);int right = STTop(&s);STPop(&s);int keyi = PartSort3(a, left, right);//分区间[left, keyi-1] keyi [keyi+1, right]if (keyi + 1 < right){STPush(&s, right);STPush(&s, keyi + 1);}if (left < keyi - 1){STPush(&s, keyi - 1);STPush(&s, left);}}STDestory(&s);
}

我们目前学习数据结构到此,由于我们呢接触了不少的递归操作,不难发现,其实递归的算法与栈这个数据结构较为类似。

我们还是一样先对整体进行排序,分别将begin和end入栈,然后设置好left和right。在第一次对总体排完序后,还是一如既往的会分出两个区间,我们又需要分别对左右两个区间进行排序。

在我们利用栈执行代码的时候要注意先后顺序,先入栈的后后访问,后入栈的先访问。

《归并排序》:

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。

void _MergeSort(int* a, int begin, int end, int* tmp)
{if (begin >= end){return;}int mid = (end + begin) / 2;//[begin, mid] [mid + 1, end]_MergeSort(a, begin, mid, tmp);_MergeSort(a, mid + 1, end, tmp);int begin1 = begin;int end1 = mid;int begin2 = mid + 1;int end2 = end;int i = begin;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] <= a[begin2])//<=才是稳定的{tmp[i++] = a[begin1++];}else{tmp[i++] = a[begin2++];}}while (begin1 <= end1){tmp[i++] = a[begin1++];}while (begin2 <= end2){tmp[i++] = a[begin2++];}memcpy(a + begin, tmp + begin, sizeof(int)* (end - begin + 1));}void MergeSort(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)* n);if (tmp == NULL){perror("tmp -> malloc");exit(-1);}_MergeSort(a, 0, n - 1, tmp);}

 所谓归并,就是分而治之。

我们使用递归来实现数组的分割和合并,它的逻辑非常像二叉树的后序遍历,由于我们要使用递归,又要申请临时空间,所以我们先申请好临时空间,再将归并排序过程作为子函数调用,这样不用在每次递归过程申请释放空间

《归并排序(非递归)》:

我们在快速排序的非递归中运用了栈这一数据结构,而我们在实现归并排序中,不可以去使用栈这一数据结构。

首先我们要知道,如果我们不用栈,我们可以用哪些方法替代,一个我们熟知的方法,是栈,还有一个则是循环。

那么话说回来,为什么不能用栈呢?

对于归并排序来说,与我们在二叉树所介绍的后序遍历较为相似,属于是“先把每条路走了,再回来说再见”。相比较于快速排序,利用栈是先对总体进行排序,再分区间进行排序。

而归并排序呢,一上来就把左区间给排完了,那右区间该怎么找呢?出栈后还要在归并的过程中再次使用出栈后的子区间。

所以我们需要利用循环来进行处理。

我们可以理解我从底层向上拓展,所以我们一开始是1个数据和1个数据进行比较,就像:

我们可以设置一个gap,就像希尔排序那样,只不过这次我们需要利用这个gap来限制end和begin

我们初始化gap == 1,意思就是两两比较,a[0]与a[1]比较分出大小,a[1]与a[2]比较分出大小,最后当下标越界了的时候,我们就可以开始对四个四个之间进行比较,让gap*=2即可分好下一个小组。

 

void MergeSortNoR(int* a, int n)
{int* tmp = (int*)malloc(sizeof(int)* n);if (tmp == NULL){perror("tmp -> malloc");exit(-1);}int gap = 1;while (gap < n){for (int i = 0; i < n; i += 2 * gap){int begin1 = i;int end1 = i + gap - 1;int begin2 = i + gap;int end2 = i + 2 * gap - 1;if (end1 >= n || begin1 >= n){break;}if (end2 >= n){end2 = n - 1;}int j = begin1;while (begin1 <= end1 && begin2 <= end2){if (a[begin1] < a[begin2]){tmp[j++] = a[begin1++];}else{tmp[j++] = a[begin2++];}}while (begin1 <= end1){tmp[j++] = a[begin1++];}while (begin2 <= end2){tmp[j++] = a[begin2++];}memcpy(a + i, tmp + i, sizeof(int)* (end2 - i + 1));}gap *= 2;}}

《计数排序》:

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

 

void CountSort(int* a, int n)
{int min = a[0];int max = a[0];for (int i = 0; i < n; i++){if (a[i] < min){min = a[i];}if (a[i] > max){max = a[i];}}int range = max - min + 1;int* count = (int*)calloc(range, sizeof(int));//计数for (int i = 0; i < n; i++){count[a[i] - min]++;}//排序int j = 0;for (int i = 0; i < range; i++){while (count[i]--){a[j++] = i + min;}}}

这里我们做了一个优化,假设我们要排序2,3,8888,6666,诸如这样间隔相差很大的数字,如果不做优化处理就直接calloc新数组,那么会造成许多的空间浪费,所以减去最小值,减小空间的浪费。

这种排序的局限性集中于:

1.不适合分散的数据,适合集中的数据。

2.不适合浮点数、字符串、结构体数据排序,只适合整数。



对于快速排序的优化:

假设每次取的关键字key恰好是最大值或者最小值,即数组已经有序,这时的时间复杂度就是O(N^2)

所以我们可以找到最左边,最右边,和中间值,进行三数取中,谁不大不小就让谁做关键字并且与第一个数进行交换。

int GetMidi(int* a, int begin, int end)
{int midi = (begin + end) / 2;if (a[midi] < a[begin]){if (a[end] < a[midi]){return midi;}else if (a[begin] < a[end]){return begin;}else{return end;}}else //a[midi]>a[begin]{if (a[end] > a[midi]){return midi;}else if (a[begin] > a[end]){return begin;}else{return begin;}}
}

分析:

 

 

我们可以通过随机生成100000个数来进行效率的测试。

//测试效率
void TestOp()
{srand(time(0));const int N = 100000;int* a1 = (int*)malloc(sizeof(int)* N);int* a2 = (int*)malloc(sizeof(int)* N);int* a3 = (int*)malloc(sizeof(int)* N);int* a4 = (int*)malloc(sizeof(int)* N);int* a5 = (int*)malloc(sizeof(int)* N);int* a6 = (int*)malloc(sizeof(int)* N);int* a7 = (int*)malloc(sizeof(int)* N);int* a8 = (int*)malloc(sizeof(int)* N);int* a9 = (int*)malloc(sizeof(int)* N);for (int i = 0; i < N; ++i){a1[i] = rand();a2[i] = a1[i];a3[i] = a1[i];a4[i] = a1[i];a5[i] = a1[i];a6[i] = a1[i];a7[i] = a1[i];a9[i] = a1[i];}for (int i = 0; i < N; i++){a8[i] = i;}int begin1 = clock();InsertSort(a1, N);int end1 = clock();int begin2 = clock();ShellSort(a2, N);int end2 = clock();int begin3 = clock();SelectSort(a3, N);int end3 = clock();int begin4 = clock();HeapSort(a4, N);int end4 = clock();int begin5 = clock();QuickSort(a5, 0, N - 1);int end5 = clock();int begin6 = clock();MergeSort(a6, N);int end6 = clock();int begin9 = clock();CountSort(a9, N);int end9 = clock();printf("InsertSort(直接插入排序):%d\n", end1 - begin1);printf("ShellSort(希尔排序):%d\n", end2 - begin2);printf("SelectSort(选择排序):%d\n", end3 - begin3);printf("HeapSort(堆排序):%d\n", end4 - begin4);printf("QuickSort(快速排序):%d\n", end5 - begin5);printf("MergeSortSort(归并排序):%d\n", end6 - begin6);printf("CountSort(计数排序):%d\n", end9 - begin9);free(a1);free(a2);free(a3);free(a4);free(a5);free(a6);free(a7);free(a9);
}

 

总结:

 本章到此,数据结构初阶的内容就告一段落了,接下来我们逐步讲解C++与Linux的各个重点内容。

这篇关于《初阶数据结构》尾声的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/737183

相关文章

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

《数据结构(C语言版)第二版》第八章-排序(8.3-交换排序、8.4-选择排序)

8.3 交换排序 8.3.1 冒泡排序 【算法特点】 (1) 稳定排序。 (2) 可用于链式存储结构。 (3) 移动记录次数较多,算法平均时间性能比直接插入排序差。当初始记录无序,n较大时, 此算法不宜采用。 #include <stdio.h>#include <stdlib.h>#define MAXSIZE 26typedef int KeyType;typedef char In

【408数据结构】散列 (哈希)知识点集合复习考点题目

苏泽  “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家    知识点 1. 散列查找 散列查找是一种高效的查找方法,它通过散列函数将关键字映射到数组的一个位置,从而实现快速查找。这种方法的时间复杂度平均为(

浙大数据结构:树的定义与操作

四种遍历 #include<iostream>#include<queue>using namespace std;typedef struct treenode *BinTree;typedef BinTree position;typedef int ElementType;struct treenode{ElementType data;BinTree left;BinTre

Python 内置的一些数据结构

文章目录 1. 列表 (List)2. 元组 (Tuple)3. 字典 (Dictionary)4. 集合 (Set)5. 字符串 (String) Python 提供了几种内置的数据结构来存储和操作数据,每种都有其独特的特点和用途。下面是一些常用的数据结构及其简要说明: 1. 列表 (List) 列表是一种可变的有序集合,可以存放任意类型的数据。列表中的元素可以通过索

浙大数据结构:04-树7 二叉搜索树的操作集

这道题答案都在PPT上,所以先学会再写的话并不难。 1、BinTree Insert( BinTree BST, ElementType X ) 递归实现,小就进左子树,大就进右子树。 为空就新建结点插入。 BinTree Insert( BinTree BST, ElementType X ){if(!BST){BST=(BinTree)malloc(sizeof(struct TNo

【数据结构入门】排序算法之交换排序与归并排序

前言         在前一篇博客,我们学习了排序算法中的插入排序和选择排序,接下来我们将继续探索交换排序与归并排序,这两个排序都是重头戏,让我们接着往下看。  一、交换排序 1.1 冒泡排序 冒泡排序是一种简单的排序算法。 1.1.1 基本思想 它的基本思想是通过相邻元素的比较和交换,让较大的元素逐渐向右移动,从而将最大的元素移动到最右边。 动画演示: 1.1.2 具体步

数据结构:线性表的顺序存储

文章目录 🍊自我介绍🍊线性表的顺序存储介绍概述例子 🍊顺序表的存储类型设计设计思路类型设计 你的点赞评论就是对博主最大的鼓励 当然喜欢的小伙伴可以:点赞+关注+评论+收藏(一键四连)哦~ 🍊自我介绍   Hello,大家好,我是小珑也要变强(也是小珑),我是易编程·终身成长社群的一名“创始团队·嘉宾” 和“内容共创官” ,现在我来为大家介绍一下有关物联网-嵌入

[数据结构]队列之顺序队列的类模板实现

队列是一种限定存取位置的线性表,允许插入的一端叫做队尾(rear),允许删除的一端叫做队首(front)。 队列具有FIFO的性质 队列的存储表示也有两种方式:基于数组的,基于列表的。基于数组的叫做顺序队列,基于列表的叫做链式队列。 一下是基于动态数组的顺序队列的模板类的实现。 顺序队列的抽象基类如下所示:只提供了接口和显式的默认构造函数和析构函数,在派生类中调用。 #i