【Week-P8】YOLOv5-C3模块实现天气识别

2024-02-22 19:12

本文主要是介绍【Week-P8】YOLOv5-C3模块实现天气识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

YOLOv5-C3模块实现天气识别

  • 一、环境配置
  • 二、准备数据
  • 三、搭建网络结构-YOLO-C3模块
  • 四、开始训练
  • 五、查看训练结果
  • 六、总结(`forward`函数内部没有调用新增加的层,训练所使用的网络结构还是原来的结构,注意通道参数的一致,训练结果待修改)
    • 6.1 增加C3模块(网络结构代码已修改,训练结果待修改)
      • (1)增加一个C3模块,test_acc=91.6%,增加了4.5%
      • (2) 增加两个C3模块,test_acc=92.0%,与(1)相比,增加了0.4%

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

说明:
(1)本次学习着重学习YOLO-C3模块,并比较不同数量下的C3模块对训练结果的test_acc有何影响;
(2)注意:

  • 模型每增加一个C3模块,forward()函数内部也同步增加一个C3模块;这是因为init里是定义,forward是调用;
  • 每次的训练情况在本文的【总结】部分有详细说明。

一、环境配置

● 语言环境:Python3.7.8
● 编译器:VSCode
● 数据集:天气识别数据集
● 深度学习环境:Pytorch
○ torch 1.13.1
○ torchvision 0.14.1
○ torchsummary 1.5.1

# Yolo-C3模块学习
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib,warningswarnings.filterwarnings("ignore")             #忽略警告信息print("--------------------------1. 配置环境------------------------")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print("Device: ", device)

在这里插入图片描述

二、准备数据

2.1 打印classeNames列表,显示每个文件所属的类别名称
2.2 打印归一化后的类别名称,01
2.3 划分数据集,划分为训练集&测试集,torch.utils.data.DataLoader()参数详解
2.4 检查数据集的shape

print("--------------------------2.1 导入本地数据------------------------")
import os,PIL,random,pathlib
data_dir = 'D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/'
data_dir = pathlib.Path(data_dir)data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[5] for path in data_paths]
print("classesName: ", classeNames)
print("--------------------------2.2 数据集归一化------------------------")
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸# transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])test_transform = transforms.Compose([transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])total_data = datasets.ImageFolder("D:/jupyter notebook/DL-100-days/datasets/P3-天气识别/weather_photos/",transform=train_transforms)
print("tota_data: ", total_data)
print("class_to_idx: ", total_data.class_to_idx)
print("--------------------------2.3 划分数据集------------------------")
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print("train_dataset: ", train_dataset)
print("test_dataset: ", test_dataset)batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,batch_size=batch_size,shuffle=True,num_workers=0)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size=batch_size,shuffle=True,num_workers=0)
for X, y in test_dl:print("Shape of X [N, C, H, W]: ", X.shape)print("Shape of y: ", y.shape, y.dtype)break

在这里插入图片描述

三、搭建网络结构-YOLO-C3模块

在这里插入图片描述

print("--------------------------3.1 创建网络结构------------------------")
import torch.nn.functional as F
'''
定义网络中需要用到的模块
'''
def autopad(k, p=None):  # kernel, padding# Pad to 'same'if p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):# Standard convolutiondef __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groupssuper().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())def forward(self, x):return self.act(self.bn(self.conv(x)))class Bottleneck(nn.Module):# Standard bottleneckdef __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c_, c2, 3, 1, g=g)self.add = shortcut and c1 == c2def forward(self, x):return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))class C3(nn.Module):# CSP Bottleneck with 3 convolutionsdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansionsuper().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, 1, 1)self.cv2 = Conv(c1, c_, 1, 1)self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))def forward(self, x):return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
'''
用上述模块组建网络
'''
class model_K(nn.Module):def __init__(self):super(model_K, self).__init__()# 卷积模块self.Conv = Conv(3, 32, 3, 2) # C3模块1self.C3_1 = C3(32, 64, 3, 2)# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=802816, out_features=100),nn.ReLU(),nn.Linear(in_features=100, out_features=4))def forward(self, x):x = self.Conv(x)x = self.C3_1(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return x
'''
打印设备信息、模型结构、模型参数量
'''
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))model = model_K().to(device)
model# 统计模型参数量以及其他指标
import torchsummary as summary
summary.summary(model, (3, 224, 224))

网络结构没有打印出(本来应该打印在Using cpu device后边的),原因是没有写成print(model)(在jupyter notebook中可以直接打印model的结构),此处只打印了模型参数量信息。
在这里插入图片描述

四、开始训练

4.1 设置超参数
4.2 编写训练函数
4.3 编写测试函数
4.4 开始正式训练,epochs==20
📌如果将优化器换成 SGD 会发生什么呢?请自行探索接下来发生的诡异事件的原因。

print("--------------------------4.1 编写训练函数------------------------")
# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss
print("--------------------------4.2 编写测试函数------------------------")
def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss
print("--------------------------4.3 正式训练------------------------")
import copyoptimizer  = torch.optim.Adam(model.parameters(), lr= 1e-4)
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数epochs     = 20train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc   = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))# 保存最佳模型到文件中
PATH = './P8_best_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)
print('Done')

在这里插入图片描述
训练20个epoch后,得到的test_acc=87.1%。

五、查看训练结果

print("--------------------------5.1 Accuracy Loss图------------------------")
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.savefig("./P8_Accuracy_Loss.png")
plt.show()

print("--------------------------5.2 模型评估------------------------")
best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc, epoch_test_loss
# 查看是否与我们记录的最高准确率一致
epoch_test_acc

在这里插入图片描述
在这里插入图片描述

六、总结(forward函数内部没有调用新增加的层,训练所使用的网络结构还是原来的结构,注意通道参数的一致,训练结果待修改)

说明:init函数内增加或减少层数,forward函数内部也要统一。注意通道数的计算。
本次学习,总结部分无效。

增加C3模块,forward()函数内部无变化,观察test_acc的值:

C3模块个数test_acc
187.1%
291.6%
392.0%

增加C3模块,forward()函数内部也相应增加C3模块,观察test_acc的值:

C3模块个数test_acc
187.1%
2%
3%

6.1 增加C3模块(网络结构代码已修改,训练结果待修改)

(1)增加一个C3模块,test_acc=91.6%,增加了4.5%

模型定义内容2.0修改如下:

'''
增加一个C3模块
'''
class model_K(nn.Module):def __init__(self):super(model_K, self).__init__()# 卷积模块self.Conv = Conv(3, 32, 3, 2) # C3模块1self.C3_1 = C3(32, 64, 3, 2)# C3模块2self.C3_2 = C3(64, 128, 3, 2)# 全连接网络层,用于分类self.classifier = nn.Sequential(nn.Linear(in_features=802816, out_features=100),nn.ReLU(),nn.Linear(in_features=100, out_features=4))'''此处forward()函数内部没有同步增加一个C3模块'''def forward(self, x):x = self.Conv(x)x = self.C3_1(x)x = self.C3_2(x)x = torch.flatten(x, start_dim=1)x = self.classifier(x)return x

增加一个C3模块后,参数量的变化:
在这里插入图片描述
训练结果如下:在这里插入图片描述
可以看到,增加一个C3模块后的test_acc=91.6%,比原来的87.1%增加了4.5%。
Accuracy-Loss图如下所示:
在这里插入图片描述

(2) 增加两个C3模块,test_acc=92.0%,与(1)相比,增加了0.4%

epoch=15~17时,test_acc=93.3%;
epoch=18时,test_acc跌至92.0%;
epoch=19时,test_acc跌至88.9%;
epoch=20时,test_acc恢复至92.0%
在这里插入图片描述
在这里插入图片描述
模型评估得到的epoch_test_acc=93.8%(训练中得到的最高准确率,epoch=14时)
在这里插入图片描述

## 6.2 增加C3模块,forward()函数内部同步增加C3模块【报错,通道数对不上,此部分代码需要调整】
在这里插入图片描述

这篇关于【Week-P8】YOLOv5-C3模块实现天气识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/736225

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import