MapReduce之WordCount实战——统计某电商网站买家收藏商品数量

本文主要是介绍MapReduce之WordCount实战——统计某电商网站买家收藏商品数量,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MapReduce之WordCount实战——统计某电商网站买家收藏商品数量

文章目录

  • MapReduce之WordCount实战——统计某电商网站买家收藏商品数量
  • 预习内容:
    • 一、实验目的和要求∶
    • 二、实验任务∶
    • 三、实验准备方案,包括以下内容:
  • 实验内容
    • 一、 实验用仪器、设备:
    • 二、实验内容与步骤(过程及数据记录):
      • 1. 前置的输入数据准备
      • 2. 开始编写任务程序
        • 1 )环境准备
          • (1)创建 maven 工程,MapReduceDemo
          • (2)在 pom.xml 文件中添加版本信息以及相关依赖
          • (3)在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”(打印相关日志)
          • (4)创建包名:com.leokadia.count
        • 2 ) 编写程序
          • (1)编写 Mapper 类
          • (2)编写 Reducer 类
          • (3)编写 Driver 驱动类
        • 3 ) 提交到集群测试
          • (1)用 maven 打 jar 包,需要添加的打包插件依赖
          • (2)将程序打包成 jar 包
          • (3)将jar包导入到hadoop集群中
          • (4)执行程序
  • 三、感想、体会、建议∶

预习内容:

一、实验目的和要求∶

了解基本的MapReduce程序结构

二、实验任务∶

现有某电商网站用户对商品的收藏数据,记录了用户收藏的商品id以及收藏日期,名为buyer_favorite1。
buyer_favorite1包含:买家id,商品id,收藏日期这三个字段,数据以“\t”分割。
数据样例与格式如下:
在这里插入图片描述
要求编写MapReduce程序,统计每个买家收藏商品数量,并撰写实验报告。

三、实验准备方案,包括以下内容:

(硬件类实验:实验原理、实验线路、设计方案等)
(软件类实验:所采用的系统、组件、工具、核心方法、框架或流程图、程序清单等)

  • 设备:一台windows10宿主机,三台linux(centos8)虚拟机
  • 节点:hadoop102,hadoop103,hadoop104
  • 模板机::hadoop100
  • 文件传输软件: Xftp6
  • 开发平台:hadoop-3.1.3
  • 集成开发环境:XSHELL,IDEA

实验内容

一、 实验用仪器、设备:

宿主机配置如下:

在这里插入图片描述
三台虚拟机配置如下:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二、实验内容与步骤(过程及数据记录):

1. 前置的输入数据准备

首先创建数据文件shop.txt
在这里插入图片描述
在hadoop-3.1.3目录下创建一个文件夹装数据,具体步骤如下:

[leokadia@hadoop102 ~]$ cd $HADOOP_HOME

[leokadia@hadoop102 hadoop-3.1.3]$ mkdir shopData
然后进入创建好的装数据的文件夹shopData
[leokadia@hadoop102 hadoop-3.1.3]$ cd shopData/
将刚刚创建的shop.txt直接拖拽到里面
在这里插入图片描述

然后可以查看一下(检查一下我们导入的数据是不是我们刚刚设置的数据)
[leokadia@hadoop102 shopData]$ cat shop.txt
在这里插入图片描述
在HDFS根目录下建立一个文件夹shoplnputData
[leokadia@hadoop102 shopData]$ hadoop fs -mkdir /shopInputData
在这里插入图片描述

从本地拷贝数据文件shop.txt到刚刚HDFS中刚刚新建的shoplnputData文
[leokadia@hadoop102 shopData]$ hadoop fs -put shop.txt /shopInputData
在这里插入图片描述

在这里插入图片描述

2. 开始编写任务程序

1 )环境准备
(1)创建 maven 工程,MapReduceDemo

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
按照之前的修改成自己的Maven仓库,相关内容可参考:
HDFS的API环境准备小知识——Maven 安装与配置
在这里插入图片描述

然后将相关java编译器配成自己的版本

注意:由于hadoop3.x支支持JDK8,建议所有的环境都配成8

(2)在 pom.xml 文件中添加版本信息以及相关依赖
<properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><java.version>1.8</java.version><maven.compiler.source>1.8</maven.compiler.source><maven.compiler.target>1.8</maven.compiler.target><encoding>UTF-8</encoding></properties><dependencies><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>3.1.3</version></dependency><dependency><groupId>junit</groupId><artifactId>junit</artifactId><version>4.12</version></dependency><dependency><groupId>org.slf4j</groupId><artifactId>slf4j-log4j12</artifactId><version>1.7.30</version></dependency></dependencies>

在这里插入图片描述

(3)在项目的 src/main/resources 目录下,新建一个文件,命名为“log4j.properties”(打印相关日志)

在这里插入图片描述
在这里插入图片描述
在文件中填入:

log4j.rootLogger=INFO, stdout   
log4j.appender.stdout=org.apache.log4j.ConsoleAppender   
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout   
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n   
log4j.appender.logfile=org.apache.log4j.FileAppender   
log4j.appender.logfile.File=target/spring.log   
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout   
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n 

在这里插入图片描述

(4)创建包名:com.leokadia.count

在这里插入图片描述
并在包下创建三个java类:
在这里插入图片描述

2 ) 编写程序
(1)编写 Mapper 类
package com.leokadia.count;
/*** @author sa* @create 2021-04-25 16:51*/
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;public class CountMapper extends Mapper<LongWritable, Text, Text, Text>
{private Text outK = new Text();private Text outV = new Text();protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)throws IOException, InterruptedException{String[] split = value.toString().split("\t");this.outK.set(split[0]);this.outV.set(split[1]);context.write(this.outK, this.outV);}
}

在这里插入图片描述

(2)编写 Reducer 类
package com.leokadia.count;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;/*** @author sa* @create 2021-04-25 16:52*/public class CountReducer extends Reducer<Text, Text, Text, IntWritable>
{private IntWritable outV = new IntWritable();protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, IntWritable>.Context context) throws IOException, InterruptedException{int sum = 0;for (Text value : values) {sum++;}this.outV.set(sum);context.write(key, this.outV);}
}

在这里插入图片描述

(3)编写 Driver 驱动类
package com.leokadia.count;/*** @author sa* @create 2021-04-25 16:51*/
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;public class CountDriver
{public static void main(String[] args)throws IOException, ClassNotFoundException, InterruptedException{Job job = Job.getInstance(new Configuration());job.setJarByClass(CountDriver.class);job.setMapperClass(CountMapper.class);job.setReducerClass(CountReducer.class);job.setMapOutputKeyClass(Text.class);job.setMapOutputValueClass(Text.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);FileInputFormat.setInputPaths(job, new Path[] { new Path(args[0]) });FileOutputFormat.setOutputPath(job, new Path(args[1]));System.exit(job.waitForCompletion(true) ? 0 : 1);}
}

在这里插入图片描述

3 ) 提交到集群测试

在linux虚拟机上去运行

集群上测试

(1)用 maven 打 jar 包,需要添加的打包插件依赖

将下面的代码放在之前配置的依赖后面

<build> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <version>3.8.1</version> <configuration> <source>1.8</source> <target>1.8</target> </configuration> </plugin> <plugin> <artifactId>maven-assembly-plugin</artifactId> <configuration> <descriptorRefs> <descriptorRef>jar-with-dependencies</descriptorRef> </descriptorRefs> </configuration> <executions> <execution> <id>make-assembly</id> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> </plugins> 
</build> 

在这里插入图片描述
注意:如果工程上显示红叉。在项目上右键->maven->Reimport 刷新即可。

(2)将程序打包成 jar 包

点击右边Maven,先点击clean再点击package打包
在这里插入图片描述
左边出现jar包,上面的是不带依赖的,下面的是带依赖的,由于我们的hadoop集群中已经配置了相关文件,所以用上面的即可。
在这里插入图片描述
在文件夹中查看它
在这里插入图片描述
从文件夹中复制到桌面,并更名pCount.jar
在这里插入图片描述

(3)将jar包导入到hadoop集群中

将其拖拽到hadoop中
在这里插入图片描述
使shopData中有pCount.jar
然后运行

(4)执行程序

[leokadia@hadoop102 shopData]$ hadoop jar pCount.jar com.leokadia.count.CountDriver /shopInputData /shopOutputData

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
结果示例:
在这里插入图片描述

三、感想、体会、建议∶

在执行wordcount程序时
[leokadia@hadoop102 hadoop-3.1.3]$ hadoop jar wc.jar com.leokadia.mapreduce.wordcount2.WordCountDriver /user/leokadia/Marvel /user/leokadia/output

我本以为最后一步就大功告成了,但报出以下错误
原来java本地版本与hadoop的版本不兼容
在这里插入图片描述

我在本地装的14,当时在hadoop里面配置的8
本地的java版本
在这里插入图片描述
hadoop里面装的java版本
在这里插入图片描述
于是,然后经过查证,hadoop3.x目前只支持jdk1.8
只好将本地的jdk版本改成8
因此我专门将我的JDK14卸干净,回去重新下载了一遍JDK8,并重新配置
具体如何卸载和安装我专门又写了篇博客
JDK的卸载与安装(慎重下载高版本JDK!强烈建议要安装就安装JDK8)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
修改配置后,删除原来的jar包,再重新生成即可。
期间还遇到
【Maven报错】Error:java: 不再支持源选项 5。请使用 6 或更高版本。
这个错误,最后尝试了许多方法也成功解决。具体的,我也写了篇博客论述相关解决办法。

在这几个月的大数据学习过程中我写了30篇左右关于大数据的博客,博客浏览量达到近4万,帮助了许多同学以及陌生人,收益匪浅。

这篇关于MapReduce之WordCount实战——统计某电商网站买家收藏商品数量的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/734067

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

nginx部署https网站的实现步骤(亲测)

《nginx部署https网站的实现步骤(亲测)》本文详细介绍了使用Nginx在保持与http服务兼容的情况下部署HTTPS,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值... 目录步骤 1:安装 Nginx步骤 2:获取 SSL 证书步骤 3:手动配置 Nginx步骤 4:测

在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程

《在Java中使用ModelMapper简化Shapefile属性转JavaBean实战过程》本文介绍了在Java中使用ModelMapper库简化Shapefile属性转JavaBean的过程,对比... 目录前言一、原始的处理办法1、使用Set方法来转换2、使用构造方法转换二、基于ModelMapper

Java实战之自助进行多张图片合成拼接

《Java实战之自助进行多张图片合成拼接》在当今数字化时代,图像处理技术在各个领域都发挥着至关重要的作用,本文为大家详细介绍了如何使用Java实现多张图片合成拼接,需要的可以了解下... 目录前言一、图片合成需求描述二、图片合成设计与实现1、编程语言2、基础数据准备3、图片合成流程4、图片合成实现三、总结前

nginx-rtmp-module构建流媒体直播服务器实战指南

《nginx-rtmp-module构建流媒体直播服务器实战指南》本文主要介绍了nginx-rtmp-module构建流媒体直播服务器实战指南,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. RTMP协议介绍与应用RTMP协议的原理RTMP协议的应用RTMP与现代流媒体技术的关系2

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一