代码随想录算法训练营第三八天 | 动态规划

2024-02-21 13:20

本文主要是介绍代码随想录算法训练营第三八天 | 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 动态规划基础
  • 斐波那契数
  • 爬楼梯
  • 使用最小花费爬楼梯

LeetCode 509. 斐波那契数
LeetCode 70. 爬楼梯
LeetCode 746. 使用最小花费爬楼梯

动态规划基础

Dynamic Programming (DP) 如果某一问题有很多重叠子问题,使用动态规划是最有效的。

动态规划中每一个状态一定是由上一个状态推导出来的,区分于贪心,贪心是从局部直接选最优的。

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

斐波那契数

class Solution {public int fib(int n) {// dp[i] : 第i 个数的斐波那契数值// 递推公式:dp[i] = dp[i - 1] + dp[i - 2]// 初始化: dp[0] = 0;//         dp[1] = 1;// 遍历顺序: 从前到后// 举例推导 dp 数组:  0 1 1 2 3 5 8 13 21 34 55if (n <= 1) return n;int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}

也可以只维护两个元素的数组,for 循环里交换一下 :

int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;

递归 时间复杂度 O ( 2 n ) O(2^n) O(2n)

class Solution {public int fib(int n) {if (n <= 1) return n;return fib(n - 1) + fib(n - 2);}
}

爬楼梯

和斐波那契数列一样,dp数组每个值代表爬到第i层楼梯有 dp[i]种方法。

class Solution {public int climbStairs(int n) {// dp[i] 爬到第i层楼梯,有 dp[i]种方法// dp[i] = dp[i - 1] + dp[i - 2] // dp[1] = 1,dp[2] = 2 从i = 3 开始递推// 遍历顺序: 从前往后// 举例推导: 1 2 3 5 8if (n <= 2) return n;int[] dp = new int[3];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
}

使用最小花费爬楼梯

class Solution {public int minCostClimbingStairs(int[] cost) {// dp[i] 到达第i台阶所花费的最小体力 // dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);// dp[0] = 0; dp[1] = 0;// 前序// 举例int[] dp = new int[cost.length + 1];dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.length; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.length];}
}

这篇关于代码随想录算法训练营第三八天 | 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/731906

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n