代码随想录算法训练营第三八天 | 动态规划

2024-02-21 13:20

本文主要是介绍代码随想录算法训练营第三八天 | 动态规划,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 动态规划基础
  • 斐波那契数
  • 爬楼梯
  • 使用最小花费爬楼梯

LeetCode 509. 斐波那契数
LeetCode 70. 爬楼梯
LeetCode 746. 使用最小花费爬楼梯

动态规划基础

Dynamic Programming (DP) 如果某一问题有很多重叠子问题,使用动态规划是最有效的。

动态规划中每一个状态一定是由上一个状态推导出来的,区分于贪心,贪心是从局部直接选最优的。

  • 确定dp数组(dp table)以及下标的含义
  • 确定递推公式
  • dp数组如何初始化
  • 确定遍历顺序
  • 举例推导dp数组

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的!

写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果。

斐波那契数

class Solution {public int fib(int n) {// dp[i] : 第i 个数的斐波那契数值// 递推公式:dp[i] = dp[i - 1] + dp[i - 2]// 初始化: dp[0] = 0;//         dp[1] = 1;// 遍历顺序: 从前到后// 举例推导 dp 数组:  0 1 1 2 3 5 8 13 21 34 55if (n <= 1) return n;int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= n; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[n];}
}

也可以只维护两个元素的数组,for 循环里交换一下 :

int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;

递归 时间复杂度 O ( 2 n ) O(2^n) O(2n)

class Solution {public int fib(int n) {if (n <= 1) return n;return fib(n - 1) + fib(n - 2);}
}

爬楼梯

和斐波那契数列一样,dp数组每个值代表爬到第i层楼梯有 dp[i]种方法。

class Solution {public int climbStairs(int n) {// dp[i] 爬到第i层楼梯,有 dp[i]种方法// dp[i] = dp[i - 1] + dp[i - 2] // dp[1] = 1,dp[2] = 2 从i = 3 开始递推// 遍历顺序: 从前往后// 举例推导: 1 2 3 5 8if (n <= 2) return n;int[] dp = new int[3];dp[1] = 1;dp[2] = 2;for (int i = 3; i <= n; i++) {int sum = dp[1] + dp[2];dp[1] = dp[2];dp[2] = sum;}return dp[2];}
}

使用最小花费爬楼梯

class Solution {public int minCostClimbingStairs(int[] cost) {// dp[i] 到达第i台阶所花费的最小体力 // dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);// dp[0] = 0; dp[1] = 0;// 前序// 举例int[] dp = new int[cost.length + 1];dp[0] = 0;dp[1] = 0;for (int i = 2; i <= cost.length; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.length];}
}

这篇关于代码随想录算法训练营第三八天 | 动态规划的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/731906

相关文章

一文详解SpringBoot中控制器的动态注册与卸载

《一文详解SpringBoot中控制器的动态注册与卸载》在项目开发中,通过动态注册和卸载控制器功能,可以根据业务场景和项目需要实现功能的动态增加、删除,提高系统的灵活性和可扩展性,下面我们就来看看Sp... 目录项目结构1. 创建 Spring Boot 启动类2. 创建一个测试控制器3. 创建动态控制器注

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,