缓存驱动联邦学习架构赋能个性化边缘智能 | TMC 2024

本文主要是介绍缓存驱动联邦学习架构赋能个性化边缘智能 | TMC 2024,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

缓存驱动联邦学习架构赋能个性化边缘智能 | TMC 2024

伴随着移动设备的普及与终端数据的爆炸式增长,边缘智能(Edge Intelligence, EI)逐渐成为研究领域的前沿。在这一浪潮中,联邦学习(Federated Learning, FL)作为分布式机器学习的新范式,不断吸引着学术界和行业界的广泛关注。其通过多个设备协作训练共享AI模型的同时,避免了私有数据的交换,从而既保障了数据隐私,又实现了模型训练的分布式进行,成为落实边缘智能的关键技术路径。然而,如何在保持高通信效率的同时,满足终端设备多样个性化需求的模型训练是一个关键性挑战。最新发表于《Transactions on Mobile Computing》的论文FedCache: A Knowledge Cache-driven Federated Learning Architecture for Personalized Edge Intelligence为这一问题提供了创新性解决方案。

边缘智能中的个性化

边缘智能场景下,模型的协同训练不仅要应对设备硬件差异化的挑战,还需在优化目标、通信效率、隐私保护等方面进行多维度权衡:

  1. 设备的硬件资源和用户使用习惯各异,需要部署既能满足个性化任务目标又能适应硬件规模的模型。
  2. 通信能力的局限性和对隐私的重视要求在协作训练中最小化通信成本,并且严格禁止私有数据的共享。
  3. 设备连接的不稳定性决定了协同过程中不适合采用同步的通信方式
    在这里插入图片描述

超越主流架构的FedCache

FedCache是一种缓存驱动的联邦学习架构,旨在为个性化边缘智能(Personalized Edge Intelligence)提供强有力的支撑。FedCache通过在服务端维护一个知识缓存,用于捕获与每个私有样本关联的最新知识,并使用知识缓存驱动的个性化蒸馏技术进行终端设备模型的训练。在初始化阶段,所有私有样本通过深度预训练的神经网络被编码成哈希值,以便在边缘采用隐私保护的方式下判断样本之间的相关度。在正式训练阶段,终端设备基于本地样本索引迭代地向服务器发送知识请求,从中取用相应的知识,并在设备上开展基于蒸馏的个性化优化。
在这里插入图片描述
在这里插入图片描述

FedCache的核心在于其独特的服务器端知识缓存机制,该机制利用哈希值管理设备样本的相似性和关联知识,以优化训练过程。这种独特的设计不仅保护了数据隐私,还避免了设备之间的参数交互,显著降低了通信负担。此外,FedCache允许不同设备的模型架构完全独立,优化目标差异化,且支持异步优化。

实验结果

本文在四个数据集上验证了FedCache的性能。实验结果显示,主流的个性化联邦学习方法相比,FedCache在通信效率上提高了两个数量级,同时在模型性能上也能达到相当的水平。FedCache的这些特性不仅展示了其在架构设计上的创新性,也证明了其在实际应用中的巨大潜力。通过这种缓存驱动的优化方法,FedCache正引领个性化边缘智能的未来,为分布式AI的实施开辟了新的道路。
在这里插入图片描述
在这里插入图片描述

论文地址:https://ieeexplore.ieee.org/document/10420495

代码链接:https://github.com/wuzhiyuan2000/FedCache

这篇关于缓存驱动联邦学习架构赋能个性化边缘智能 | TMC 2024的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730420

相关文章

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

Linux修改pip和conda缓存路径的几种方法

《Linux修改pip和conda缓存路径的几种方法》在Python生态中,pip和conda是两种常见的软件包管理工具,它们在安装、更新和卸载软件包时都会使用缓存来提高效率,适当地修改它们的缓存路径... 目录一、pip 和 conda 的缓存机制1. pip 的缓存机制默认缓存路径2. conda 的缓

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

一文详解Nginx的强缓存和协商缓存

《一文详解Nginx的强缓存和协商缓存》这篇文章主要为大家详细介绍了Nginx中强缓存和协商缓存的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、强缓存(Strong Cache)1. 定义2. 响应头3. Nginx 配置示例4. 行为5. 适用场景二、协商缓存(协

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

Golang基于内存的键值存储缓存库go-cache

《Golang基于内存的键值存储缓存库go-cache》go-cache是一个内存中的key:valuestore/cache库,适用于单机应用程序,本文主要介绍了Golang基于内存的键值存储缓存库... 目录文档安装方法示例1示例2使用注意点优点缺点go-cache 和 Redis 缓存对比1)功能特性