【bzoj1096】【ZJOI2007】【仓库建设】【斜率优化dp】

2024-02-20 15:38

本文主要是介绍【bzoj1096】【ZJOI2007】【仓库建设】【斜率优化dp】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Description
L公司有N个工厂,由高到底分布在一座山上。如图所示,工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据: 工厂i距离工厂1的距离Xi(其中X1=0);  工厂i目前已有成品数量Pi;  在工厂i建立仓库的费用Ci; 请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
Input
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
Output
仅包含一个整数,为可以找到最优方案的费用。
Sample Input
3
0 5 10
5 3 100
9 6 10
Sample Output
32
HINT
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)*5+(9-5)*3=57,总费用67,不如前者优。
【数据规模】
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
题解:
设f(i)表示前i个工厂,并且在第i个工厂建仓库的最小费用。
设s(i)为第i个工厂到第1个工厂的距离.
a(i)为工厂i的货物数量。
c(i)为在工厂i建造仓库的费用。

f(i)=min(f(i),f(j)+k=j+1i(s(i)s(k))a(k)+c(i)

f(i)=min(f(i),f(j)+s(i)k=j+1ia(k)k=j+1is(k)a(k)+c(i))

预处理a(i)和a(i)*s(i)的前缀和.可以做到O( n2 )。
代入前缀和的式子显然可以斜率优化。
维护一个下凸壳即可。
时间复杂度O( n <script type="math/tex" id="MathJax-Element-555">n</script>);
代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 1000010
using namespace std;
int q[N],n,l,r;
long long s[N],a[N],p[N],sp[N],c[N],f[N];
long long G(int a,int b){return f[b]-f[a]+sp[b]-sp[a];}
long long S(int a,int b){return p[b]-p[a];}
double work(int a,int b){return G(a,b)*1.0/S(a,b)*1.0;}
int main(){ scanf("%d",&n);for (int i=1;i<=n;i++) scanf("%lld%lld%lld",&s[i],&a[i],&c[i]);for (int i=1;i<=n;i++) p[i]=p[i-1]+a[i];for (int i=1;i<=n;i++) sp[i]=sp[i-1]+s[i]*a[i];for (int i=1;i<=n;i++){while (l<r&&work(q[l],q[l+1])<s[i]) l++;f[i]=f[q[l]]+s[i]*(p[i]-p[q[l]])-(sp[i]-sp[q[l]])+c[i]; while (l<r&&work(q[r-1],q[r])>work(q[r],i)) r--;q[++r]=i;}cout<<f[n]<<endl;     
}

这篇关于【bzoj1096】【ZJOI2007】【仓库建设】【斜率优化dp】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728697

相关文章

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

使用国内镜像源优化pip install下载的方法步骤

《使用国内镜像源优化pipinstall下载的方法步骤》在Python开发中,pip是一个不可或缺的工具,用于安装和管理Python包,然而,由于默认的PyPI服务器位于国外,国内用户在安装依赖时可... 目录引言1. 为什么需要国内镜像源?2. 常用的国内镜像源3. 临时使用国内镜像源4. 永久配置国内镜

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Java嵌套for循环优化方案分享

《Java嵌套for循环优化方案分享》介绍了Java中嵌套for循环的优化方法,包括减少循环次数、合并循环、使用更高效的数据结构、并行处理、预处理和缓存、算法优化、尽量减少对象创建以及本地变量优化,通... 目录Java 嵌套 for 循环优化方案1. 减少循环次数2. 合并循环3. 使用更高效的数据结构4