c++ 线性代数 克·施密特(Gram Schmidt)

2024-02-20 10:36

本文主要是介绍c++ 线性代数 克·施密特(Gram Schmidt),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        克·施密特(Gram-Schmidt)正交化方法是一种将一组线性无关的向量转换为一组正交(垂直)向量的技术。该方法是线性代数中常用的工具,它的核心思想是将一组线性无关的向量集合通过减去它们在前面向量方向上的投影来得到一组正交的向量。

具体步骤如下:

  1. 给定一组线性无关的向量 {v₁, v₂, ..., vn}。
  2. 将第一个向量v₁单位化得到u₁: u₁ = v₁ / ||v₁||,其中||v₁||是v₁的模。
  3. 对于i从2到n: a. 计算第i个向量vᵢ与前i-1个单位化向量u₁, u₂, ..., uᵢ₋₁之间的投影: projᵢ = (vᵢ · u₁)u₁ + (vᵢ · u₂)u₂ + ... + (vᵢ · uᵢ₋₁)uᵢ₋₁ b. 计算第i个正交向量uᵢ: uᵢ = vᵢ - projᵢ c. 将uᵢ单位化: uᵢ = uᵢ / ||uᵢ||

        通过这种方法,我们可以从一个线性无关的向量集合构造出一组正交的基向量,这在解决许多数学和工程问题时非常有用。Gram-Schmidt方法在解决线性方程组、矩阵分解、特征值问题等方面具有广泛的应用。

示例:

linearalgebra.h:

/* ----------------------- norm ----------------------- */
/*  Given an array and its length, this function 
    computes the 2-norm of the array.
    
    Input variables:
        x     : pointer to array for which the 2-norm should
                 be computed.
        length: number of entries in x.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.      */

double norm (double * x, int length) {
    int i, length5;
    double a, sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * x[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * x[i] + x[i + 1] * x[i + 1] + x[i + 2] * x[i + 2]
                           + x[i + 3] * x[i + 3] + x[i + 4] * x[i + 4];
    }

    return sqrt(sum);
}


/* ----------------------- vec_copy ----------------------- */
/*  Given two arrays of the same length and their length, 
    this function stores the values from the first array
    in the second array.
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

void vec_copy (double * x, double * y, int length) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i];
    }
    for(; i < length; i += 5) {
        y[i] = x[i];
        y[i + 1] = x[i + 1];
        y[i + 2] = x[i + 2];
        y[i + 3] = x[i + 3];
        y[i + 4] = x[i + 4];
    }
}


/* ------------------- partialvec_copy ------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function stores the values from the
    subarray x[index : index + length] in the array
    y[0 : length].
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in y.
        index : starting index of subarray of x to be
                copied to y.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, and index = 2. Then after executing
    partialvec_copy(x, y, 3, 2), the array pointed to by 
    y is now {3, 4, 5}.                         

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

void partialvec_copy (double * x, double * y, int length, int index) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i + index];
    }
    for(; i < length; i += 5) {
        y[i] = x[i + index];
        y[i + 1] = x[i + index + 1];
        y[i + 2] = x[i + index + 2];
        y[i + 3] = x[i + index + 3];
        y[i + 4] = x[i + index + 4];
    }
}


/* ----------------------- scalar_div ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function divides the values from the 
    first array by the scalar value and stores the computed
    number in the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 divided by r and stored in second array, y.
        r     : scalar used in division.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_div (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i]/r;
    }
    for(; i < length; i += 5) {
        y[i] = x[i]/r;
        y[i + 1] = x[i + 1]/r;
        y[i + 2] = x[i + 2]/r;
        y[i + 3] = x[i + 3]/r;
        y[i + 4] = x[i + 4]/r;
    }
}


/* ----------------------- scalar_sub ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function multiplies the values from the 
    first array by the scalar value and then subtracts the 
    computed components from the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_sub (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i] -= r * x[i];
        y[i + 1] -= r * x[i + 1];
        y[i + 2] -= r * x[i + 2];
        y[i + 3] -= r * x[i + 3];
        y[i + 4] -= r * x[i + 4];
    }
}


/* --------------------- partialscalar_sub --------------------- */
/*  Given two arrays, the length of the second array, a scalar 
    value, and an index, this function multiplies the values 
    starting at the given index from the first array by the 
    scalar value and then subtracts the computed components from 
    the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in y.
        index : 
        y     : pointer to array in which the components
                 of x are to be stored.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, r = -1, and index = 2. Then after executing
    partialscalar_sub(x, -1, 3, 2, y), the array pointed to 
    by y is now {-3, -4, -5}. 

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.               */

void partialscalar_sub (double * x, double r, int length, 
                                              int index, double * y) 
{
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i + index] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i + index] -= r * x[i];
        y[i + index + 1] -= r * x[i + 1];
        y[i + index + 2] -= r * x[i + 2];
        y[i + index + 3] -= r * x[i + 3];
        y[i + index + 4] -= r * x[i + 4];
    }
}


/* --------------------- dot_product --------------------- */
/*  Given two arrays of the same length and their length, 
    this function returns the dot product of the two 
    arrays.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

double dot_product (double * x, double * y, int length) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* ------------------ partialdot_product ------------------ */
/*  Given two arrays of the same length, their length, and
    an index this function returns the dot product of the 
    two subarrays x[index : length] and y[index : length].
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.
        index : starting index for subarrays.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4}, y is a pointer to the array {5, 6, 7, 8}, 
    length = 4, and index = 2. Then the value returned by
    executing partialdot_product(x, y, 4, 2) is 53, which
    is computed by
        x[2] * y[2] + x[3] * y[3] = 3 * 7 + 4 * 8
                                  = 21 + 32
                                  = 53.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double partialdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = index; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* -------------------- subdot_product -------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function returns the dot product of the 
    two subarrays x[index : index + length] and 
    y[0 : length]. It is necessary that index + length is
    at most the length of the first array.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in y.
        index : starting index for subarray of x.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array 
    {-1, -2, -3}, length = 3, and index = 2. Then the value 
    returned by executing subdot_product(x, y, 3, 2) is 53, 
    which is computed by
            x[2] * y[0] + x[3] * y[1] + x[4] * y[2] 

          =  3   *  -1  +  4   *  -2  +  5   *  -3

          = -    3      -      8      -      15

          = -26.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double subdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i + index] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i + index] * y[i] + x[i + index + 1] * y[i + 1] 
                                   + x[i + index + 2] * y[i + 2]
                                   + x[i + index + 3] * y[i + 3]
                                   + x[i + index + 4] * y[i + 4];
    }

    return sum;
}

gramSchmidt.cpp:

#include <algorithm>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include "linearalgebra.h"


/* ----------------------- gramSchmidt ----------------------- */
/*  Given a matrix A of dimension m by n, this algorithm 
    computes a QR decomposition of A, where Q is a unitary 
    m by n matrix and R is a n by n upper triangular matrix
    and A = QR.    
    
    Input variables:
        a   : pointer to array of arrays, the ith array of
                which should correspond to the ith column of the 
                matrix A. During the algorithm, the columns of Q 
                will replace the columns of A.
        r   : pointer to array of arrays in which the ith 
                column of the upper triangular matrix R will be 
                stored in the ith subarray of r.
        m   : number of columns in A.
        n   : number of rows in A.
        thin: TRUE  => thin QR factorization computed
              FALSE => full QR factorization computed

    Features: This implementation has time complexity O(m n^2)
    and requires O(1) additional memory.

    Remarks: Due to the nature of the problem, if A is nearly
    rank-deficient then the resulting columns of Q may not
    exhibit the orthogonality property.                        */

void gramSchmidt (double ** a, double ** r, int m, int n, bool full) {
    int i, j;
    double anorm, tol = 10e-7;

    for(i = 0; i < n; i++) {
        r[i][i] = norm(a[i], m);                  // r_ii = ||a_i||

        if(r[i][i] > tol) {
            scalar_div(a[i], r[i][i], m, a[i]);   // a_i = a_i/r_ii
        }
        else if(i == 0) { // set a[0] = [1 0 0 ... 0]^T
            a[i][0] = 1;
            for(j = 1; j < m; j++) {
                a[i][j] = 0;
            }
        }
        else{ // need to choose a_i orthogonal to < a_1, ... a_{i-1} >
            for(j = 0; j < m; j++) {
                a[i][j] = -a[0][i] * a[0][j];
            }
            a[i][i] += 1;

            for(j = 1; j < i; j++) {
                scalar_sub(a[j], a[j][i], m, a[i]);
            }

            anorm = norm(a[i], m);
            scalar_div(a[i], anorm, m, a[i]);
        }

        for(j = i+1; j < n; j++) {
            r[j][i] = dot_product(a[i], a[j], m); // r_ij = a_i*a_j
            scalar_sub(a[i], r[j][i], m, a[j]);   // a_j -= r_ij a_i
        }
    }

    /* if full QR factorization requested, we choose remaining 
       columns of Q so that the m columns of Q form an 
       orthonormal set                                          */
    if(full) {
        for(; i < m; i++) {
            for(j = 0; j < m; j++) {
                    a[i][j] = -a[0][i] * a[0][j];
                }
                a[i][i] += 1;
    
                for(j = 1; j < i; j++) {
                    scalar_sub(a[j], a[j][i], m, a[i]);
                }
    
                anorm = norm(a[i], m);
                scalar_div(a[i], anorm, m, a[i]);
        }
    }
}


int main () {
    int i, j, n, m, q_n, r_m;
    bool full;
    double x;

    /* let user set the dimension of matrix A */
    std::cout << "Enter the dimension m (where A is a m by n matrix): ";
    std::cin >> m;
    std::cout << "Enter the dimension n (where A is a m by n matrix): ";
    std::cin >> n;

    if(m != n) {
        /* check if m < n */
        if(m < n) {
            printf("For a successful factorization, this implementation "
                   "requires n <= m.\nTerminating program.\n");
            return 0;
        }
        /* let user choose either full or thin QR factorization */
        std::cout << "Enter either 0 to compute a thin QR factorization"
                  << std::endl;
        std::cout << "          or 1 to compute a full QR factorization: ";
        std::cin >> full;
    }
    else { // else m == n so full and thin QR factorization are identical */
        full = 1;
    }

    /* set dimensions of matrices Q and R based on full or thin QR */
    if(full) { // Q is m by m and R is m by n
        q_n = m;
        r_m = m;
    }
    else { // Q is m by n and R is n by n
        q_n = n;
        r_m = n;
    }

    /* allocate memory for the matrices A and R */
    double ** a = new double*[q_n];
    double ** r = new double*[n];
    for(i = 0; i < n; i++) {
        a[i] = new double[m];
        r[i] = new double[r_m];
    }
    for(; i < q_n; i++) {
        a[i] = new double[m];
    }

    /* initialize the values in matrix A (only n columns regardless of
       thin QR or full QR) */
    for(i = 0; i < n; i++) {
        for(j = i; j < m; j++) {
            a[i][j] = j - i + 1; // this choice of values was arbitrary
        }
    }

    /* print the matrix A before calling gramSchmidt */
    std::cout << "A = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* execute gramSchmidt to compute QR factorization */
    gramSchmidt(a, r, m, n, full);

    /* print the matrix Q resulting from gramSchmidt */
    std::cout << "Q = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < q_n; j++) {
            if(a[j][i] >= 0) {
                std::cout << " ";
            }
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print the matrix R resulting from gramSchmidt */
    std::cout << "R = " << std::endl;
    for(i = 0; i < r_m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", r[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print numerical evidence that columns of Q are orthonormal */
    printf("Numerical verification that {q_1, ..., q_%i} is an "
           "orthonormal set:\n", q_n);
    for(i = 0; i < q_n; i++) {
        for(j = i; j < q_n; j++) {
            x = dot_product(a[i], a[j], m);
            printf("q_%i * q_%i = %lg\n", i + 1, j + 1, x);
        }
    }
    
    /* free memory */
    for(i = 0; i < n; i++) {
        delete[] a[i];
        delete[] r[i];
    }
    for(; i < q_n; i++) {
        delete[] a[i];
    }
    delete[] a;  
    delete[] r;

    return 0;       // exit main
}

 

这篇关于c++ 线性代数 克·施密特(Gram Schmidt)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727936

相关文章

Win32下C++实现快速获取硬盘分区信息

《Win32下C++实现快速获取硬盘分区信息》这篇文章主要为大家详细介绍了Win32下C++如何实现快速获取硬盘分区信息,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 实现代码CDiskDriveUtils.h#pragma once #include <wtypesbase

C++ Primer 标准库vector示例详解

《C++Primer标准库vector示例详解》该文章主要介绍了C++标准库中的vector类型,包括其定义、初始化、成员函数以及常见操作,文章详细解释了如何使用vector来存储和操作对象集合,... 目录3.3标准库Vector定义和初始化vector对象通列表初始化vector对象创建指定数量的元素值

C++实现回文串判断的两种高效方法

《C++实现回文串判断的两种高效方法》文章介绍了两种判断回文串的方法:解法一通过创建新字符串来处理,解法二在原字符串上直接筛选判断,两种方法都使用了双指针法,文中通过代码示例讲解的非常详细,需要的朋友... 目录一、问题描述示例二、解法一:将字母数字连接到新的 string思路代码实现代码解释复杂度分析三、

C++一个数组赋值给另一个数组方式

《C++一个数组赋值给另一个数组方式》文章介绍了三种在C++中将一个数组赋值给另一个数组的方法:使用循环逐个元素赋值、使用标准库函数std::copy或std::memcpy以及使用标准库容器,每种方... 目录C++一个数组赋值给另一个数组循环遍历赋值使用标准库中的函数 std::copy 或 std::

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解