c++ 线性代数 克·施密特(Gram Schmidt)

2024-02-20 10:36

本文主要是介绍c++ 线性代数 克·施密特(Gram Schmidt),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        克·施密特(Gram-Schmidt)正交化方法是一种将一组线性无关的向量转换为一组正交(垂直)向量的技术。该方法是线性代数中常用的工具,它的核心思想是将一组线性无关的向量集合通过减去它们在前面向量方向上的投影来得到一组正交的向量。

具体步骤如下:

  1. 给定一组线性无关的向量 {v₁, v₂, ..., vn}。
  2. 将第一个向量v₁单位化得到u₁: u₁ = v₁ / ||v₁||,其中||v₁||是v₁的模。
  3. 对于i从2到n: a. 计算第i个向量vᵢ与前i-1个单位化向量u₁, u₂, ..., uᵢ₋₁之间的投影: projᵢ = (vᵢ · u₁)u₁ + (vᵢ · u₂)u₂ + ... + (vᵢ · uᵢ₋₁)uᵢ₋₁ b. 计算第i个正交向量uᵢ: uᵢ = vᵢ - projᵢ c. 将uᵢ单位化: uᵢ = uᵢ / ||uᵢ||

        通过这种方法,我们可以从一个线性无关的向量集合构造出一组正交的基向量,这在解决许多数学和工程问题时非常有用。Gram-Schmidt方法在解决线性方程组、矩阵分解、特征值问题等方面具有广泛的应用。

示例:

linearalgebra.h:

/* ----------------------- norm ----------------------- */
/*  Given an array and its length, this function 
    computes the 2-norm of the array.
    
    Input variables:
        x     : pointer to array for which the 2-norm should
                 be computed.
        length: number of entries in x.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.      */

double norm (double * x, int length) {
    int i, length5;
    double a, sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * x[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * x[i] + x[i + 1] * x[i + 1] + x[i + 2] * x[i + 2]
                           + x[i + 3] * x[i + 3] + x[i + 4] * x[i + 4];
    }

    return sqrt(sum);
}


/* ----------------------- vec_copy ----------------------- */
/*  Given two arrays of the same length and their length, 
    this function stores the values from the first array
    in the second array.
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

void vec_copy (double * x, double * y, int length) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i];
    }
    for(; i < length; i += 5) {
        y[i] = x[i];
        y[i + 1] = x[i + 1];
        y[i + 2] = x[i + 2];
        y[i + 3] = x[i + 3];
        y[i + 4] = x[i + 4];
    }
}


/* ------------------- partialvec_copy ------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function stores the values from the
    subarray x[index : index + length] in the array
    y[0 : length].
    
    Input variables:
        x     : pointer to array whose entries are to be
                 copied.
        y     : pointer to array in which the components
                 of x are to be stored.
        length: number of entries in y.
        index : starting index of subarray of x to be
                copied to y.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, and index = 2. Then after executing
    partialvec_copy(x, y, 3, 2), the array pointed to by 
    y is now {3, 4, 5}.                         

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

void partialvec_copy (double * x, double * y, int length, int index) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i + index];
    }
    for(; i < length; i += 5) {
        y[i] = x[i + index];
        y[i + 1] = x[i + index + 1];
        y[i + 2] = x[i + index + 2];
        y[i + 3] = x[i + index + 3];
        y[i + 4] = x[i + index + 4];
    }
}


/* ----------------------- scalar_div ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function divides the values from the 
    first array by the scalar value and stores the computed
    number in the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 divided by r and stored in second array, y.
        r     : scalar used in division.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_div (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] = x[i]/r;
    }
    for(; i < length; i += 5) {
        y[i] = x[i]/r;
        y[i + 1] = x[i + 1]/r;
        y[i + 2] = x[i + 2]/r;
        y[i + 3] = x[i + 3]/r;
        y[i + 4] = x[i + 4]/r;
    }
}


/* ----------------------- scalar_sub ----------------------- */
/*  Given two arrays of the same length, their length, and a
    scalar value this function multiplies the values from the 
    first array by the scalar value and then subtracts the 
    computed components from the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in x and in y.
        y     : pointer to array in which the components
                 of x are to be stored.


    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.            */

void scalar_sub (double * x, double r, int length, double * y) {
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i] -= r * x[i];
        y[i + 1] -= r * x[i + 1];
        y[i + 2] -= r * x[i + 2];
        y[i + 3] -= r * x[i + 3];
        y[i + 4] -= r * x[i + 4];
    }
}


/* --------------------- partialscalar_sub --------------------- */
/*  Given two arrays, the length of the second array, a scalar 
    value, and an index, this function multiplies the values 
    starting at the given index from the first array by the 
    scalar value and then subtracts the computed components from 
    the components the second array.
    
    Input variables:
        x     : pointer to array whose components are to be
                 multiplied by r then subtracted from the
                 components of the second array, y.
        r     : scalar used in multiplication.
        length: number of entries in y.
        index : 
        y     : pointer to array in which the components
                 of x are to be stored.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array {0, 0, 0}, 
    length = 3, r = -1, and index = 2. Then after executing
    partialscalar_sub(x, -1, 3, 2, y), the array pointed to 
    by y is now {-3, -4, -5}. 

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.               */

void partialscalar_sub (double * x, double r, int length, 
                                              int index, double * y) 
{
    int i, length5;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        y[i + index] -= r * x[i];
    }
    for(; i < length; i += 5) {
        y[i + index] -= r * x[i];
        y[i + index + 1] -= r * x[i + 1];
        y[i + index + 2] -= r * x[i + 2];
        y[i + index + 3] -= r * x[i + 3];
        y[i + index + 4] -= r * x[i + 4];
    }
}


/* --------------------- dot_product --------------------- */
/*  Given two arrays of the same length and their length, 
    this function returns the dot product of the two 
    arrays.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.         */

double dot_product (double * x, double * y, int length) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* ------------------ partialdot_product ------------------ */
/*  Given two arrays of the same length, their length, and
    an index this function returns the dot product of the 
    two subarrays x[index : length] and y[index : length].
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in x and in y.
        index : starting index for subarrays.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4}, y is a pointer to the array {5, 6, 7, 8}, 
    length = 4, and index = 2. Then the value returned by
    executing partialdot_product(x, y, 4, 2) is 53, which
    is computed by
        x[2] * y[2] + x[3] * y[3] = 3 * 7 + 4 * 8
                                  = 21 + 32
                                  = 53.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double partialdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = index; i < length5; i++) {
        sum += x[i] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i] * y[i] + x[i + 1] * y[i + 1] + x[i + 2] * y[i + 2]
                           + x[i + 3] * y[i + 3] + x[i + 4] * y[i + 4];
    }

    return sum;
}


/* -------------------- subdot_product -------------------- */
/*  Given two arrays, the length of the second array, and
    an index this function returns the dot product of the 
    two subarrays x[index : index + length] and 
    y[0 : length]. It is necessary that index + length is
    at most the length of the first array.
    
    Input variables:
        x     : pointer to first array.
        y     : pointer to second array.
        length: number of entries in y.
        index : starting index for subarray of x.

    Example: Suppose x is a pointer to the array 
    {1, 2, 3, 4, 5}, y is a pointer to the array 
    {-1, -2, -3}, length = 3, and index = 2. Then the value 
    returned by executing subdot_product(x, y, 3, 2) is 53, 
    which is computed by
            x[2] * y[0] + x[3] * y[1] + x[4] * y[2] 

          =  3   *  -1  +  4   *  -2  +  5   *  -3

          = -    3      -      8      -      15

          = -26.

    Features: This implementation has time complexity 
    O(length) and requires O(1) additional memory.          */

double subdot_product (double * x, double * y, int length, int index) {
    int i, length5;
    double sum = 0;

    length5 = length % 5;

    for(i = 0; i < length5; i++) {
        sum += x[i + index] * y[i];
    }
    for(; i < length; i += 5) {
        sum += x[i + index] * y[i] + x[i + index + 1] * y[i + 1] 
                                   + x[i + index + 2] * y[i + 2]
                                   + x[i + index + 3] * y[i + 3]
                                   + x[i + index + 4] * y[i + 4];
    }

    return sum;
}

gramSchmidt.cpp:

#include <algorithm>
#include <cmath>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include "linearalgebra.h"


/* ----------------------- gramSchmidt ----------------------- */
/*  Given a matrix A of dimension m by n, this algorithm 
    computes a QR decomposition of A, where Q is a unitary 
    m by n matrix and R is a n by n upper triangular matrix
    and A = QR.    
    
    Input variables:
        a   : pointer to array of arrays, the ith array of
                which should correspond to the ith column of the 
                matrix A. During the algorithm, the columns of Q 
                will replace the columns of A.
        r   : pointer to array of arrays in which the ith 
                column of the upper triangular matrix R will be 
                stored in the ith subarray of r.
        m   : number of columns in A.
        n   : number of rows in A.
        thin: TRUE  => thin QR factorization computed
              FALSE => full QR factorization computed

    Features: This implementation has time complexity O(m n^2)
    and requires O(1) additional memory.

    Remarks: Due to the nature of the problem, if A is nearly
    rank-deficient then the resulting columns of Q may not
    exhibit the orthogonality property.                        */

void gramSchmidt (double ** a, double ** r, int m, int n, bool full) {
    int i, j;
    double anorm, tol = 10e-7;

    for(i = 0; i < n; i++) {
        r[i][i] = norm(a[i], m);                  // r_ii = ||a_i||

        if(r[i][i] > tol) {
            scalar_div(a[i], r[i][i], m, a[i]);   // a_i = a_i/r_ii
        }
        else if(i == 0) { // set a[0] = [1 0 0 ... 0]^T
            a[i][0] = 1;
            for(j = 1; j < m; j++) {
                a[i][j] = 0;
            }
        }
        else{ // need to choose a_i orthogonal to < a_1, ... a_{i-1} >
            for(j = 0; j < m; j++) {
                a[i][j] = -a[0][i] * a[0][j];
            }
            a[i][i] += 1;

            for(j = 1; j < i; j++) {
                scalar_sub(a[j], a[j][i], m, a[i]);
            }

            anorm = norm(a[i], m);
            scalar_div(a[i], anorm, m, a[i]);
        }

        for(j = i+1; j < n; j++) {
            r[j][i] = dot_product(a[i], a[j], m); // r_ij = a_i*a_j
            scalar_sub(a[i], r[j][i], m, a[j]);   // a_j -= r_ij a_i
        }
    }

    /* if full QR factorization requested, we choose remaining 
       columns of Q so that the m columns of Q form an 
       orthonormal set                                          */
    if(full) {
        for(; i < m; i++) {
            for(j = 0; j < m; j++) {
                    a[i][j] = -a[0][i] * a[0][j];
                }
                a[i][i] += 1;
    
                for(j = 1; j < i; j++) {
                    scalar_sub(a[j], a[j][i], m, a[i]);
                }
    
                anorm = norm(a[i], m);
                scalar_div(a[i], anorm, m, a[i]);
        }
    }
}


int main () {
    int i, j, n, m, q_n, r_m;
    bool full;
    double x;

    /* let user set the dimension of matrix A */
    std::cout << "Enter the dimension m (where A is a m by n matrix): ";
    std::cin >> m;
    std::cout << "Enter the dimension n (where A is a m by n matrix): ";
    std::cin >> n;

    if(m != n) {
        /* check if m < n */
        if(m < n) {
            printf("For a successful factorization, this implementation "
                   "requires n <= m.\nTerminating program.\n");
            return 0;
        }
        /* let user choose either full or thin QR factorization */
        std::cout << "Enter either 0 to compute a thin QR factorization"
                  << std::endl;
        std::cout << "          or 1 to compute a full QR factorization: ";
        std::cin >> full;
    }
    else { // else m == n so full and thin QR factorization are identical */
        full = 1;
    }

    /* set dimensions of matrices Q and R based on full or thin QR */
    if(full) { // Q is m by m and R is m by n
        q_n = m;
        r_m = m;
    }
    else { // Q is m by n and R is n by n
        q_n = n;
        r_m = n;
    }

    /* allocate memory for the matrices A and R */
    double ** a = new double*[q_n];
    double ** r = new double*[n];
    for(i = 0; i < n; i++) {
        a[i] = new double[m];
        r[i] = new double[r_m];
    }
    for(; i < q_n; i++) {
        a[i] = new double[m];
    }

    /* initialize the values in matrix A (only n columns regardless of
       thin QR or full QR) */
    for(i = 0; i < n; i++) {
        for(j = i; j < m; j++) {
            a[i][j] = j - i + 1; // this choice of values was arbitrary
        }
    }

    /* print the matrix A before calling gramSchmidt */
    std::cout << "A = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* execute gramSchmidt to compute QR factorization */
    gramSchmidt(a, r, m, n, full);

    /* print the matrix Q resulting from gramSchmidt */
    std::cout << "Q = " << std::endl;
    for(i = 0; i < m; i++) {
        for(j = 0; j < q_n; j++) {
            if(a[j][i] >= 0) {
                std::cout << " ";
            }
            printf("%9.6lg ", a[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print the matrix R resulting from gramSchmidt */
    std::cout << "R = " << std::endl;
    for(i = 0; i < r_m; i++) {
        for(j = 0; j < n; j++) {
            printf("%9.6lg ", r[j][i]);
        }
        std::cout << std::endl;
    }
    std::cout << std::endl;

    /* print numerical evidence that columns of Q are orthonormal */
    printf("Numerical verification that {q_1, ..., q_%i} is an "
           "orthonormal set:\n", q_n);
    for(i = 0; i < q_n; i++) {
        for(j = i; j < q_n; j++) {
            x = dot_product(a[i], a[j], m);
            printf("q_%i * q_%i = %lg\n", i + 1, j + 1, x);
        }
    }
    
    /* free memory */
    for(i = 0; i < n; i++) {
        delete[] a[i];
        delete[] r[i];
    }
    for(; i < q_n; i++) {
        delete[] a[i];
    }
    delete[] a;  
    delete[] r;

    return 0;       // exit main
}

 

这篇关于c++ 线性代数 克·施密特(Gram Schmidt)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727936

相关文章

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

C++中初始化二维数组的几种常见方法

《C++中初始化二维数组的几种常见方法》本文详细介绍了在C++中初始化二维数组的不同方式,包括静态初始化、循环、全部为零、部分初始化、std::array和std::vector,以及std::vec... 目录1. 静态初始化2. 使用循环初始化3. 全部初始化为零4. 部分初始化5. 使用 std::a

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

Python获取C++中返回的char*字段的两种思路

《Python获取C++中返回的char*字段的两种思路》有时候需要获取C++函数中返回来的不定长的char*字符串,本文小编为大家找到了两种解决问题的思路,感兴趣的小伙伴可以跟随小编一起学习一下... 有时候需要获取C++函数中返回来的不定长的char*字符串,目前我找到两种解决问题的思路,具体实现如下:

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.