摆(行列式、杜教筛)

2024-02-19 20:44
文章标签 行列式 杜教

本文主要是介绍摆(行列式、杜教筛),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

有一个 n × n n\times n n×n 的矩阵 A A A,满足:
A i , j = { 1 i = j 0 i ≠ j ∧ i ∣ j C otherwise A_{i,j}=\begin{cases} 1 &i=j\\ 0 &i\not=j\land i\mid j\\ C &\text{otherwise} \end{cases} Ai,j= 10Ci=ji=jijotherwise

det ⁡ ( A ) \det(A) det(A)。答案模 998244353 998244353 998244353

n ≤ 1 0 11 n\le10^{11} n1011


显然当 C = 0 C=0 C=0 时答案为 1 1 1,当 C = 1 C=1 C=1 时若 n ≤ 2 n\le2 n2 则答案为 1 1 1 否则为 0 0 0

首先 A A A 形如:
[ 1 0 0 0 0 … C 1 C 0 C … C C 1 C C … C C C 1 C … C C C C 1 … ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ] \begin{bmatrix} 1&0&0&0&0&\dots\\ C&1&C&0&C&\dots\\ C&C&1&C&C&\dots\\ C&C&C&1&C&\dots\\ C&C&C&C&1&\dots\\ \vdots&\vdots&\vdots&\vdots&\vdots&\ddots \end{bmatrix} 1CCCC01CCC0C1CC00C1C0CCC1

考虑把主对角线的 1 1 1 换位 C + x C+x C+x,这样 det ⁡ ( A ) \det(A) det(A) 就可看做关于 x x x 的多项式,求值只需代入 x = 1 − C x=1-C x=1C 即可。

这里有个式子

det ⁡ ( A ) = ∑ S ⊂ { 1 , 2 , … , n } det ⁡ ( B S ) ⋅ x n − ∣ S ∣ \det(A)=\sum\limits_{S\subset\{1,2,\dots,n\}}\det(B_S)\cdot x^{n-|S|} det(A)=S{1,2,,n}det(BS)xnS

其中 B S B_S BS 表示把矩阵 A A A 主对角线元素换成 C C C,只选出行列都在 S S S 中的元素拼接形成的矩阵。

例如: B { 1 , 2 , 4 , 5 , 8 } = [ C 0 0 0 0 C C 0 C 0 C C C C 0 C C C C C C C C C C ] B_{\{1,2,4,5,8\}}=\begin{bmatrix} C&0&0&0&0\\ C&C&0&C&0\\ C&C&C&C&0\\ C&C&C&C&C\\ C&C&C&C&C\\ \end{bmatrix} B{1,2,4,5,8}= CCCCC0CCCC00CCC0CCCC000CC

证明考虑感性理解。设 i = n − ∣ S ∣ i=n-|S| i=nS,对于 x i x^{i} xi 的系数,考虑行列式的定义,要选出行列都互不相同的 n n n 个数相乘,由于只有主对角线上的 C + x C+x C+x 有次数贡献,于是考虑选出来 m m m 个主对角线上的元素( m ≥ i m\ge i mi),剩下的行列拼接在一起后面选。我们此时发现 n − m + m − i = n − i n-m+m-i=n-i nm+mi=ni,说明 B S B_S BS 是由 S S S 的行列与 m m m 行列之中选 m − i m-i mi 个组成的, ( C + x ) m (C+x)^m (C+x)m x i x^i xi 的系数为 ( m i ) C m − i \binom{m}{i}C^{m-i} (im)Cmi,恰好满足条件。

我们观察 B S B_S BS,发现如果 S S S 中元素两两整除,那么 B S B_S BS 是下三角矩阵, det ⁡ ( B S ) = C ∣ S ∣ \det(B_S)=C^{|S|} det(BS)=CS。否则可以证明 det ⁡ ( B S ) = 0 \det(B_S)=0 det(BS)=0

考虑归纳法证明,如果 S S S 中存在两个数不为 S S S 中其他任何数的因子,那么矩阵中就会出现两行 C C C det ⁡ ( B S ) = 0 \det(B_S)=0 det(BS)=0;否则 S S S 中最大的数一定是其他数的倍数,从而只有最后一行全为 C C C,不妨删去最后一行列。这样递归下去,容易发现结论成立。

r = C 1 − C r=\frac{C}{1-C} r=1CC,于是 det ⁡ ( A ) = ( 1 − C ) n ∑ S 中元素两两整除 r ∣ S ∣ \det(A)=(1-C)^n\sum\limits_{S中元素两两整除} r^{|S|} det(A)=(1C)nS中元素两两整除rS

f i f_i fi 表示所有满足 S S S 中最大元素为 i i i r ∣ S ∣ r^{|S|} rS 之和(特别地, f 1 = 1 + r f_1=1+r f1=1+r)。容易得到转移式子
f i = r ∑ j ∣ i , j < i f j f_i=r\sum\limits_{j\mid i,j<i}f_j fi=rji,j<ifj

s ( i ) = ∑ j = 1 i f j s(i)=\sum\limits_{j=1}^if_j s(i)=j=1ifj,我们要求出 s ( n ) s(n) s(n)

考虑杜教筛,我们构造 g ( n ) = { − 1 n = 1 r n > 1 g(n)=\begin{cases}-1&n=1\\r&n>1\end{cases} g(n)={1rn=1n>1,函数 h = f ∗ g h=f*g h=fg,容易验证 h ( n ) = { − r − 1 n = 1 0 n > 1 h(n)=\begin{cases}-r-1&n=1\\0&n>1\end{cases} h(n)={r10n=1n>1。套用公式 g ( 1 ) s ( n ) = ∑ i = 1 n h i − ∑ i = 2 n g ( i ) s ( ⌊ n i ⌋ ) g(1)s(n)=\sum\limits_{i=1}^nh_i-\sum\limits_{i=2}^ng(i)s(\lfloor\frac ni\rfloor) g(1)s(n)=i=1nhii=2ng(i)s(⌊in⌋),可以得到 s ( n ) s(n) s(n) 的转移式子
s ( n ) = 1 + r + r ∑ i = 2 n s ( ⌊ n i ⌋ ) s(n)=1+r+r\sum\limits_{i=2}^ns(\lfloor\frac ni\rfloor) s(n)=1+r+ri=2ns(⌊in⌋)

到此直接按式子求答案是 O ( n 3 4 ) O(n^{\frac34}) O(n43) 的,如果预处理出前 n 2 3 n^{\frac23} n32 s ( n ) s(n) s(n),求值可以做到 O ( n 2 3 ) O(n^{\frac23}) O(n32)

但是预处理时间复杂度容易带上 log ⁡ \log log,所以要考虑优化。

n = ∏ p i k i n=\prod p_i^{k_i} n=piki,如果我们把 p 1 , p 2 , … p_1,p_2,\dots p1,p2, 依次换成 2 , 3 , 5 , 7 , … 2,3,5,7,\dots 2,3,5,7,,所得到的数设为 n ′ n' n,容易发现 f n = f n ′ f_n=f_{n'} fn=fn。这启发我们 f n f_n fn 的值只与可重集 k k k 有关。通过暴力发现可重集的数量很少,于是我们可以暴力求出这些“代表”的函数值,然后让找到其他数所对应的“代表”。用欧拉筛实现,具体实现可参照代码。

总的时间复杂度为 O ( n 2 3 ) O(n^{\frac23}) O(n32)

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const ll mod=998244353,N=2e7+1;
ll n,c,R;
int a[N],p[N],cnt,m,to[N],num[N],Max[N];
ll S[N];
unordered_map<ll,int> ma;
ll ksm(ll a,ll b)
{ll ans=1;while(b){if(b&1) ans=ans*a%mod;b>>=1;a=a*a%mod;}return ans;
}
ll s(ll n)
{if(n<=m) return S[n];if(ma.count(n)) return ma[n];ll ans=1+R;for(ll i=2,r;i<=n;i=r+1){r=n/(n/i);ans=(ans+(r-i+1)%mod*R%mod*s(n/i))%mod;}return ma[n]=ans;
}
void init(int n)
{a[1]=1,to[1]=S[1]=1+R;for(int i=2;i<=n;i++){if(!a[i]){p[++cnt]=i;to[i]=2;num[i]=1;Max[i]=i;}if(to[i]==i){for(int j=1;j*j<=i;j++) if(i%j==0) S[i]=(S[i]+S[j]+(j*j<i&&j>1)*S[i/j])%mod;S[i]=S[i]*R%mod;}else S[i]=S[to[i]];for(int j=1;j<=cnt&&i*p[j]<=n;j++){int x=i*p[j];a[x]=1;Max[x]=Max[i];if(i%p[j]==0){num[x]=num[i];to[x]=to[x/Max[x]]*p[num[x]];break;}num[x]=num[i]+1;to[x]=to[x/Max[x]]*p[num[x]];}}for(int i=2;i<=n;i++) S[i]=(S[i]+S[i-1])%mod;
}
int main()
{freopen("bigben.in","r",stdin);freopen("bigben.out","w",stdout);cin>>n>>c;if(!c) cout<<1,exit(0);if(c==1) cout<<(n<=2),exit(0);R=c*ksm(1-c+mod,mod-2)%mod;init(m=min(n,N-1));cout<<s(n)*ksm(1-c+mod,n)%mod;
}

这篇关于摆(行列式、杜教筛)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/725906

相关文章

洛谷 P10584 [蓝桥杯 2024 国 A] 数学题(整除分块+杜教筛)

题目 思路来源 登录 - Luogu Spilopelia 题解 参考了两篇洛谷题解,第一篇能得出这个式子,第二篇有比较严格的复杂度分析 结合去年蓝桥杯洛谷P9238,基本就能得出这题的正确做法 代码 #include<bits/stdc++.h>#include<iostream>#include<cstdio>#include<map>#include<uno

行列式和矩阵的区别

目录 一、行列式 1. 行列式的定义 2. (全)排列 3. 逆序数 二、矩阵 1. 矩阵的定义 三、行列式和矩阵的区别 四、参考书目 一、行列式 1. 行列式的定义 2. (全)排列 3. 逆序数 二、矩阵 1. 矩阵的定义 三、行列式和矩阵的区别 四、参考书目 同济大学数学系. 工程数学 线性代数 第六版. 高等教育

重构大学数学基础_week05_雅各比矩阵与雅各比行列式

这周来讲一下雅各比矩阵和雅各比行列式。 多元函数的局部线性属性 首先我们来回顾一下向量函数,就是我们输入一个向量,输出也是一个向量,我们假设现在有一个向量函数 这个函数意思就是在说,我们在原来的平面上有一个向量(x,y),经过这个函数的变换后,他变成了向量(x+sin(y),y+sin(x)),很明显,这个变换是非线性的,原来的平面会扭曲成下面这个样子 但是这个函数变换有一个比较简

矩阵---A的行列式的值与A的转置的行列式的值是一致的

假设对A逐次进行行变换 这也就相对于A的转置来说,逐次进行相应的列变换 这也就意味着,A的行列式与A的转置的行列式,他们的值,都是一致的 只不过我们是将他们横着看,还是竖着来看的问题

蓝桥杯练习系统(算法训练)ALGO-932 低阶行列式计算

资源限制 内存限制:64.0MB   C/C++时间限制:1.0s   Java时间限制:3.0s   Python时间限制:5.0s 问题描述   给出一个n阶行列式(1<=n<=9),求出它的值。 输入格式   第一行给出两个正整数n,p;   接下来n行,每行n个数,表示行列式,数据保证行列式中每个数绝对值不超过2*10^9。 输出格式   一个数表示行列式的值,答案对p取余(

c++版矩阵基本操作,行列式,逆(不限矩阵大小)

原本是为了编程实现线性回归的,想想,里面太多矩阵操作,尤其是求逆。以前学数值分析时,也用到过列主元高斯消去求解线性方程组,LU分解求解线性方程组。这次,同样是用高斯消去法求矩阵行列式的值,用LU分解求解矩阵的逆,效率上程序执行起来还行,比用python跑一边速度快,结果一致,这也潜在说明python库中矩阵求逆的实现应该也是用的LU分解。至于矩阵的其他一些操作,基本上算简单,当然面的稀疏性矩阵的话

Octave行列式矩阵运算

Octave行列式矩阵运算 Octave计算行列式指令一步步计算行列式 Octave矩阵加法Octave矩阵乘法Octave矩阵转置Octave矩阵求秩Octave矩阵求逆 仅供本人查阅 Octave 是一个开源的数值计算软件,主要用于数学计算、算法开发和数据可视化。它是 MATLAB 语言的一个兼容性很高的替代品,适合于教学、科研以及解决各种工程和数学问题。以下是关于

AI笔记: 数学基础之矩阵运算与行列式

方阵行列式 1 ) 简单的方阵行列式 行列式是数学的一个函数,可以看做是几何空间中,一个线性变换对"面积"或"体积"的影响方阵行列式,n阶方阵A的行列式表示为 ∣ A ∣ |A| ∣A∣ 或者 det(A) 1×1的方阵,其行列式等于该元素本身. A = ( a

行列式求解

行列式  给出一个矩阵求 行列式。 输入:   1 3 1 -2 -1 0 3 2 3 1 -1 思路: 不能直接乘上上面行的倍数来消除本行对应元素。试试辗转相减法把。 (1,3)减去2倍(0,1)->(1,0) (5,3)减去0倍(3,5)减去1倍(2,3)减去1倍(1,2)减去2倍(0,1)->(1,0) 然后每次检查上面行的元素是否为0,然后换回来就行了 #in

线性代数基础3 行列式

行列式 行列式其实在机器学习中用的并不多,一个矩阵必须是方阵,才能计算它的行列式 行列式是把矩阵变成一个标量 import numpy as npA = np.array([[1,3],[2,5]])display(A)print('矩阵A的行列式是:\n',np.linalg.det(A))'''array([[1, 3],[2, 5]])矩阵A的行列式是:-1.0''' 行