[算法系列之十五]Strassen矩阵相乘算法

2024-02-19 01:38

本文主要是介绍[算法系列之十五]Strassen矩阵相乘算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

Strassen矩阵乘法是一种典型的分治算法。目前为止,我们已经见过一些分治策略的算法了,例如归并排序和Karatsuba大数快速乘法。现在,让我们看看分治策略的背后原理是什么。

同动态规划不同,在动态规划中,为了得到最终的答案,我们需要把一个大的问题“展开”为几个子问题(“expand” the solutions of sub-problems),但是在这里,我们会更多的谈到如何把一些子解决方案组合到一起。对于一般问题,他们的子问题的解决方案是对等的,他们的归并方式也是通过某种方式定义好的。

一个典型的例子就是归并排序算法。在归并排序中,我们有两个有序数组,我们想要这两个数组在合并之后仍然保持有序。当然了,在归并排序中,最复杂的地方当属自我合并,而原因在于,我们不得不传递两个数组,A和B,然后去比较每一“对”分别来自数组A和数组B的元素。有一点离题,但是,这是归并排序的一个弱点,虽然,它的最坏情况的时间复杂度是 O(n.log(n)),但是,快速排序却往往是实践中更为有效的排序方法,因为,它没有“合并”的过程。快速排序仅仅把两个子数组连接到一起,请注意,在快速排序中,子数组一般并不具有相同的长度,虽然他的最坏时间复杂度是O(n^2),但它的性能却经常好于归并排序。

在上文中,那个简单的例子告诉我们:有时候如何合并两个子问题并不是一个简单的事情。因此,当我们使用分治策略的时候,我们必须非常谨慎。

历史

Volker Strassen是一位出生于1936年的德国数学家。他因为在概率论上的工作而广为人知,但是在计算机科学和算法领域,他却因为矩阵相乘算法而被大部分人认识,这个算法目前仍然是比通用矩阵相乘算法性能好的主要算法之一。

Strassen在1969年第一次发表关于这个算法的文章,并证明了复杂度为n^3的算法并不是最优算法。虽然,事实上Strassen给出的解决方案只会好一点点,但是,他的贡献却是相当巨大的,就是因为这导致了矩阵相乘领域更多的研究,产生了更快的算法,比如复杂度为O(n^2,3737)的Coppersmith-Winograd算法。

概述

两个矩阵 A[NxN] 和 B[NxN] 相乘的通用算法是非常简单的。虽然矩阵相乘比两个数字相乘要复杂得多,而且也不满足交换律,但它仍然非常简单——同时也很慢。

让我们先来定义一下什么是A[NxN]矩阵。当我们提到NxN矩阵,我们首先想到的是一个有N行N列的网格。在每一行和每一列的A[i][j],我们都有一个值。

这里写图片描述

当然,作为一个开发者,我们会把一个矩阵看成一个二维数组。

int array[][] ={{1,2,3,4},{5,6,7,8},{9,10,11,12}};

不要忘记,NxN的矩阵仅仅是任意矩阵中的一种情况,同样的,我们可以有其他任何大小的NxM矩阵(N <> M)。
然而,为了能够和另外一个矩阵相乘,矩阵的大小是非常重要的,为什么?
正如我上面提到的一样,矩阵相乘不同于数字相乘。首先,这个操作不满足交换律。

这里写图片描述

第二个问题是,让矩阵A和B相乘的方法。

这里写图片描述

仅仅因为这种方法只对NxN阶矩阵有效,因此我们能看到把矩形矩阵相乘产生的问题(Just because this works with NxN matrices we can see the problem with multiplying rectangular matrices)。确实,如果A矩阵的第二维和B矩阵的第一维不相等,这是不可能的完成的。

这里写图片描述

不过好在我们现在正在讨论的是具有相同维数的方形矩阵。
好了,现在我们知道如何让两个方形矩阵相乘(具有相同维数NxN),现在,让我们一起去评估一下一般矩阵相乘算法的时间复杂度。

我们知道A.B = C,当且仅当:

C[i][j] = sum(A[i][k] * B[k][j]) for k = 0 .. n

于是,我们有一个n^3复杂度的操作。现在,让我们尽力找一个分治策略的算法。

这个对于矩阵来说确实并不难,因为我们知道,一个矩阵可以被分成很多更小的子矩阵。

这里写图片描述

现在,我们有什么?

这里写图片描述

再一次,同样的时间复杂度——8个乘积和4个和,那么,计算量在哪?

当然, 为了得到更快的解决方案,我们不得不看一下Strassen在1969做过的工作。他如下图定义了P1, P2, P3, P4, P5, P6 和 P7。

这里写图片描述

时间复杂度

正如我以上提到的,Strassen算法仅仅比一般矩阵相乘算法好一点点。一般矩阵相乘算法时间复杂度是O(n^3),然而Strassen算法复杂度则是O(n^2.80)。

你能在下图观察到,随着n的变大,Strassen算法是如何比一般矩阵相乘算法变得更有效率的。

这里写图片描述

应用

虽然这个算法看起来更接近纯数学领域,而不是计算机领域。但在实际应用中,任何用到NxN数组的地方,我们都可以从矩阵相乘算法中获益。

另一方面,Strassen算法并不比n^3复杂度的通用矩阵相乘算法快很多。这很重要,因为对于一个很小的n(通常n<45)来说,通用矩阵相乘算法在实践中往往是更好的选择。然而,你可以从以上的图片中看到,对于n>100的情况来说,这两个算法的差别还是相当大的。

同时,当我们谈到|V| = n的邻接矩阵,以及一些依赖矩阵相乘的图论算法的时候,NxN数组经常会在这些领域中使用。

原文链接

Computer Algorithms: Strassen’s Matrix Multiplication

这篇关于[算法系列之十五]Strassen矩阵相乘算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723097

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第