[算法系列之十五]Strassen矩阵相乘算法

2024-02-19 01:38

本文主要是介绍[算法系列之十五]Strassen矩阵相乘算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

Strassen矩阵乘法是一种典型的分治算法。目前为止,我们已经见过一些分治策略的算法了,例如归并排序和Karatsuba大数快速乘法。现在,让我们看看分治策略的背后原理是什么。

同动态规划不同,在动态规划中,为了得到最终的答案,我们需要把一个大的问题“展开”为几个子问题(“expand” the solutions of sub-problems),但是在这里,我们会更多的谈到如何把一些子解决方案组合到一起。对于一般问题,他们的子问题的解决方案是对等的,他们的归并方式也是通过某种方式定义好的。

一个典型的例子就是归并排序算法。在归并排序中,我们有两个有序数组,我们想要这两个数组在合并之后仍然保持有序。当然了,在归并排序中,最复杂的地方当属自我合并,而原因在于,我们不得不传递两个数组,A和B,然后去比较每一“对”分别来自数组A和数组B的元素。有一点离题,但是,这是归并排序的一个弱点,虽然,它的最坏情况的时间复杂度是 O(n.log(n)),但是,快速排序却往往是实践中更为有效的排序方法,因为,它没有“合并”的过程。快速排序仅仅把两个子数组连接到一起,请注意,在快速排序中,子数组一般并不具有相同的长度,虽然他的最坏时间复杂度是O(n^2),但它的性能却经常好于归并排序。

在上文中,那个简单的例子告诉我们:有时候如何合并两个子问题并不是一个简单的事情。因此,当我们使用分治策略的时候,我们必须非常谨慎。

历史

Volker Strassen是一位出生于1936年的德国数学家。他因为在概率论上的工作而广为人知,但是在计算机科学和算法领域,他却因为矩阵相乘算法而被大部分人认识,这个算法目前仍然是比通用矩阵相乘算法性能好的主要算法之一。

Strassen在1969年第一次发表关于这个算法的文章,并证明了复杂度为n^3的算法并不是最优算法。虽然,事实上Strassen给出的解决方案只会好一点点,但是,他的贡献却是相当巨大的,就是因为这导致了矩阵相乘领域更多的研究,产生了更快的算法,比如复杂度为O(n^2,3737)的Coppersmith-Winograd算法。

概述

两个矩阵 A[NxN] 和 B[NxN] 相乘的通用算法是非常简单的。虽然矩阵相乘比两个数字相乘要复杂得多,而且也不满足交换律,但它仍然非常简单——同时也很慢。

让我们先来定义一下什么是A[NxN]矩阵。当我们提到NxN矩阵,我们首先想到的是一个有N行N列的网格。在每一行和每一列的A[i][j],我们都有一个值。

这里写图片描述

当然,作为一个开发者,我们会把一个矩阵看成一个二维数组。

int array[][] ={{1,2,3,4},{5,6,7,8},{9,10,11,12}};

不要忘记,NxN的矩阵仅仅是任意矩阵中的一种情况,同样的,我们可以有其他任何大小的NxM矩阵(N <> M)。
然而,为了能够和另外一个矩阵相乘,矩阵的大小是非常重要的,为什么?
正如我上面提到的一样,矩阵相乘不同于数字相乘。首先,这个操作不满足交换律。

这里写图片描述

第二个问题是,让矩阵A和B相乘的方法。

这里写图片描述

仅仅因为这种方法只对NxN阶矩阵有效,因此我们能看到把矩形矩阵相乘产生的问题(Just because this works with NxN matrices we can see the problem with multiplying rectangular matrices)。确实,如果A矩阵的第二维和B矩阵的第一维不相等,这是不可能的完成的。

这里写图片描述

不过好在我们现在正在讨论的是具有相同维数的方形矩阵。
好了,现在我们知道如何让两个方形矩阵相乘(具有相同维数NxN),现在,让我们一起去评估一下一般矩阵相乘算法的时间复杂度。

我们知道A.B = C,当且仅当:

C[i][j] = sum(A[i][k] * B[k][j]) for k = 0 .. n

于是,我们有一个n^3复杂度的操作。现在,让我们尽力找一个分治策略的算法。

这个对于矩阵来说确实并不难,因为我们知道,一个矩阵可以被分成很多更小的子矩阵。

这里写图片描述

现在,我们有什么?

这里写图片描述

再一次,同样的时间复杂度——8个乘积和4个和,那么,计算量在哪?

当然, 为了得到更快的解决方案,我们不得不看一下Strassen在1969做过的工作。他如下图定义了P1, P2, P3, P4, P5, P6 和 P7。

这里写图片描述

时间复杂度

正如我以上提到的,Strassen算法仅仅比一般矩阵相乘算法好一点点。一般矩阵相乘算法时间复杂度是O(n^3),然而Strassen算法复杂度则是O(n^2.80)。

你能在下图观察到,随着n的变大,Strassen算法是如何比一般矩阵相乘算法变得更有效率的。

这里写图片描述

应用

虽然这个算法看起来更接近纯数学领域,而不是计算机领域。但在实际应用中,任何用到NxN数组的地方,我们都可以从矩阵相乘算法中获益。

另一方面,Strassen算法并不比n^3复杂度的通用矩阵相乘算法快很多。这很重要,因为对于一个很小的n(通常n<45)来说,通用矩阵相乘算法在实践中往往是更好的选择。然而,你可以从以上的图片中看到,对于n>100的情况来说,这两个算法的差别还是相当大的。

同时,当我们谈到|V| = n的邻接矩阵,以及一些依赖矩阵相乘的图论算法的时候,NxN数组经常会在这些领域中使用。

原文链接

Computer Algorithms: Strassen’s Matrix Multiplication

这篇关于[算法系列之十五]Strassen矩阵相乘算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/723097

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言