本文主要是介绍GSC波束形成严谨推导深入细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
GSC广义旁瓣相消器的结构
如下图所示:
u ( t ) = x d ( t ) ⋅ a ( θ d ) + ∑ j = 1 M − 1 x j ( t ) ⋅ a ( θ j ) + N ( t ) u(t)=x_{d}(t) \cdot a\left(\theta_{d}\right)+\sum_{j=1}^{M-1} x_{j}(t) \cdot a\left(\theta_{j}\right)+N(t) u(t)=xd(t)⋅a(θd)+j=1∑M−1xj(t)⋅a(θj)+N(t)
某时刻空间中存在M个信号与噪声,其中M-1个为干扰信号,由N个阵列接收,M<N。
并类似于LCMV有如下约束:
C H w q = g ( 1 ) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\mathbf{C}^{H} \mathbf{w}_{q}=\mathbf{g}\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(1) CHwq=g (1)
C N × M C_{N \times M} CN×M是由期望方向和干扰方向导向矢量列向量组成的约束矩阵,
g = [ 1 0 ⋯ 0 ] M × 1 g=\left[\begin{array}{c} 1 \\ 0 \\ \cdots \\ 0 \end{array}\right]_{M \times 1} g=⎣⎢⎢⎡10⋯0⎦⎥⎥⎤M×1
在GSC中 w q \mathbf{w}_{q} wq为固定波束形成权向量
w q = C ( C H C ) − 1 g \mathbf{w}_{q}=\mathbf{C}\left(\mathbf{C}^{H} \mathbf{C}\right)^{-1} \mathbf{g} wq=C(CHC)−1g
这可以理解为对式(1)直接求伪逆即下面的第二种情况
对于线性方程组 A m × n x n × 1 = b m × 1 \mathbf{A}_{m \times n} \mathbf{x}_{n \times 1}=\mathbf{b}_{m \times 1} Am×nxn×1=bm×1
考虑(行/列)满秩的情况,分下面三种情况:
(1)如果m=n,则有唯一解: x = A − 1 b \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} x=A−1b
(2)如果m<n,即方程个数小于未知数个数,此时方程组有无穷多解。为了得到唯一解,必须增加约束条件,要求x的范数最小,这样得到的解称为最小范数解。 x = A H ( A A H ) − 1 b \mathbf{x}=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{b} x=AH(AAH)−1b
(3)如果m>n,即方程的个数大于未知数个数,此时方程组不存在精确解,只存在近似解。我们希望找到一个是方程组两边的误差平方和为最小的解,即最小二乘解。 x = ( A H
这篇关于GSC波束形成严谨推导深入细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!