GSC波束形成严谨推导深入细节

2024-02-18 02:10

本文主要是介绍GSC波束形成严谨推导深入细节,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

GSC广义旁瓣相消器的结构

如下图所示:
在这里插入图片描述

u ( t ) = x d ( t ) ⋅ a ( θ d ) + ∑ j = 1 M − 1 x j ( t ) ⋅ a ( θ j ) + N ( t ) u(t)=x_{d}(t) \cdot a\left(\theta_{d}\right)+\sum_{j=1}^{M-1} x_{j}(t) \cdot a\left(\theta_{j}\right)+N(t) u(t)=xd(t)a(θd)+j=1M1xj(t)a(θj)+N(t)
某时刻空间中存在M个信号与噪声,其中M-1个为干扰信号,由N个阵列接收,M<N。
并类似于LCMV有如下约束:
C H w q = g   ( 1 ) \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\mathbf{C}^{H} \mathbf{w}_{q}=\mathbf{g}\ \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad(1) CHwq=g (1)
C N × M C_{N \times M} CN×M是由期望方向和干扰方向导向矢量列向量组成的约束矩阵
g = [ 1 0 ⋯ 0 ] M × 1 g=\left[\begin{array}{c} 1 \\ 0 \\ \cdots \\ 0 \end{array}\right]_{M \times 1} g=100M×1

在GSC中 w q \mathbf{w}_{q} wq为固定波束形成权向量
w q = C ( C H C ) − 1 g \mathbf{w}_{q}=\mathbf{C}\left(\mathbf{C}^{H} \mathbf{C}\right)^{-1} \mathbf{g} wq=C(CHC)1g

这可以理解为对式(1)直接求伪逆即下面的第二种情况

对于线性方程组 A m × n x n × 1 = b m × 1 \mathbf{A}_{m \times n} \mathbf{x}_{n \times 1}=\mathbf{b}_{m \times 1} Am×nxn×1=bm×1
考虑(行/列)满秩的情况,分下面三种情况:
(1)如果m=n,则有唯一解: x = A − 1 b \mathbf{x}=\mathbf{A}^{-1} \mathbf{b} x=A1b
(2)如果m<n,即方程个数小于未知数个数,此时方程组有无穷多解。为了得到唯一解,必须增加约束条件,要求x的范数最小,这样得到的解称为最小范数解。 x = A H ( A A H ) − 1 b \mathbf{x}=\mathbf{A}^{H}\left(\mathbf{A} \mathbf{A}^{H}\right)^{-1} \mathbf{b} x=AH(AAH)1b
(3)如果m>n,即方程的个数大于未知数个数,此时方程组不存在精确解,只存在近似解。我们希望找到一个是方程组两边的误差平方和为最小的解,即最小二乘解。 x = ( A H

这篇关于GSC波束形成严谨推导深入细节的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719722

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

Python进阶之列表推导式的10个核心技巧

《Python进阶之列表推导式的10个核心技巧》在Python编程中,列表推导式(ListComprehension)是提升代码效率的瑞士军刀,本文将通过真实场景案例,揭示列表推导式的进阶用法,希望对... 目录一、基础语法重构:理解推导式的底层逻辑二、嵌套循环:破解多维数据处理难题三、条件表达式:实现分支

深入理解go中interface机制

《深入理解go中interface机制》本文主要介绍了深入理解go中interface机制,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前言interface使用类型判断总结前言go的interface是一组method的集合,不

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

C++链表的虚拟头节点实现细节及注意事项

《C++链表的虚拟头节点实现细节及注意事项》虚拟头节点是链表操作中极为实用的设计技巧,它通过在链表真实头部前添加一个特殊节点,有效简化边界条件处理,:本文主要介绍C++链表的虚拟头节点实现细节及注... 目录C++链表虚拟头节点(Dummy Head)一、虚拟头节点的本质与核心作用1. 定义2. 核心价值二

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

深入解析 Java Future 类及代码示例

《深入解析JavaFuture类及代码示例》JavaFuture是java.util.concurrent包中用于表示异步计算结果的核心接口,下面给大家介绍JavaFuture类及实例代码,感兴... 目录一、Future 类概述二、核心工作机制代码示例执行流程2. 状态机模型3. 核心方法解析行为总结:三