图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

本文主要是介绍图表示学习 Graph Representation Learning chapter2 背景知识和传统方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图表示学习 Graph Representation Learning chapter2 背景知识和传统方法

  • 2.1 图统计和核方法
    • 2.1.1 节点层次的统计和特征
      • 节点的度
    • 节点中心度
    • 聚类系数
    • Closed Triangles, Ego Graphs, and Motifs
  • 图层次的特征和图的核
    • 节点袋
    • Weisfieler–Lehman核
    • Graphlets和基于路径的方法
  • 邻域重叠检测

2.1 图统计和核方法

2.1.1 节点层次的统计和特征

在这里插入图片描述

节点的度

d u = ∑ v ∈ V A ( u , v ) (2.1) d_u = \sum_{v\in \mathcal{V}} A(u, v)\tag{2.1} du=vVA(u,v)(2.1)

需要说明的是,在有向和加权图中,度可以区分为不同的概念。例如入度和出度之类的。不管怎么说,这个特征在传统机器学习中都是十分重要的。

节点中心度

e u = 1 λ ∑ v ∈ V A ( u , v ) e v , ∀ u ∈ V (2.2) e_u = \frac{1}{\lambda}\sum_{v\in \mathcal{V}}A(u, v)e_v, \forall u\in \mathcal{V}\tag{2.2} eu=λ1vVA(u,v)ev,uV(2.2)

一种常见的方式是利用特征向量中心度,我们定义每个节点的中心度为周围所有中心度的均值,其中 λ \lambda λ是一个常数。

求解这一过程,可以写作如下形式: λ e = A e (2.3) \lambda e = Ae\tag{2.3} λe=Ae(2.3)
如果我们期望所有的中心度都是正的,我们可以应用Perron-Frobenius Theorem,即对A求解特征向量。
此外我们也可以通过迭代法如下: e ( t + 1 ) = A e ( t ) (2.4) e^{(t+1)}=Ae^{(t)}\tag{2.4} e(t+1)=Ae(t)(2.4)

如果我们设 e 0 = ( 1 , 1 , . . . , 1 ) T e^0=(1,1,...,1)^T e0=(1,1,...,1)T那么每次迭代后的结果是截至T步时,经过的次数,由此可以得到重要性。

聚类系数

用于衡量节点局部邻域封闭三角形的比例。

c u = ∣ ( v 1 , v 2 ) ∈ E : v 1 , v 2 ∈ N ( u ) ∣ C d u 2 (2.5) c_u=\frac{|(v_1,v_2)\in \mathcal{E}:v_1,v_2\in \mathcal{N}(u)|}{C_{d_u}^2}\tag{2.5} cu=Cdu2(v1,v2)E:v1,v2N(u)(2.5)
其中 N ( u ) = { v ∈ V : ( u , v ) ∈ E } \mathcal{N}(u)=\{v\in \mathcal{V}:(u,v)\in \mathcal{E}\} N(u)={vV:(u,v)E}也就是所有的相邻节点构成的集合。

这一特征描述了节点附近结构的紧密程度。

Closed Triangles, Ego Graphs, and Motifs

图层次的特征和图的核

节点袋

单纯综合节点的特征。

Weisfieler–Lehman核

一种迭代邻域聚合方法。
在这里插入图片描述

Graphlets和基于路径的方法

Graphlets:计算不同子图结构出现次数。具体方式为,枚举所有可能的子图结构,然后统计出现的次数。

基于路径,则是统计类似于最短路之类的。

邻域重叠检测

未完待续。

这篇关于图表示学习 Graph Representation Learning chapter2 背景知识和传统方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719609

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

sqlite3 相关知识

WAL 模式 VS 回滚模式 特性WAL 模式回滚模式(Rollback Journal)定义使用写前日志来记录变更。使用回滚日志来记录事务的所有修改。特点更高的并发性和性能;支持多读者和单写者。支持安全的事务回滚,但并发性较低。性能写入性能更好,尤其是读多写少的场景。写操作会造成较大的性能开销,尤其是在事务开始时。写入流程数据首先写入 WAL 文件,然后才从 WAL 刷新到主数据库。数据在开始

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

浅谈主机加固,六种有效的主机加固方法

在数字化时代,数据的价值不言而喻,但随之而来的安全威胁也日益严峻。从勒索病毒到内部泄露,企业的数据安全面临着前所未有的挑战。为了应对这些挑战,一种全新的主机加固解决方案应运而生。 MCK主机加固解决方案,采用先进的安全容器中间件技术,构建起一套内核级的纵深立体防护体系。这一体系突破了传统安全防护的局限,即使在管理员权限被恶意利用的情况下,也能确保服务器的安全稳定运行。 普适主机加固措施:

webm怎么转换成mp4?这几种方法超多人在用!

webm怎么转换成mp4?WebM作为一种新兴的视频编码格式,近年来逐渐进入大众视野,其背后承载着诸多优势,但同时也伴随着不容忽视的局限性,首要挑战在于其兼容性边界,尽管WebM已广泛适应于众多网站与软件平台,但在特定应用环境或老旧设备上,其兼容难题依旧凸显,为用户体验带来不便,再者,WebM格式的非普适性也体现在编辑流程上,由于它并非行业内的通用标准,编辑过程中可能会遭遇格式不兼容的障碍,导致操