飞行路线(分层图+dijstra+堆优化)(加上题目选数复习)

2024-02-17 23:36

本文主要是介绍飞行路线(分层图+dijstra+堆优化)(加上题目选数复习),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

飞行路线

这一题除了堆优化和dijstra算法和链式前向星除外还多考了一个考点就是,分层图,啥叫分层图呢?简而言之就是一个三维的图,按照其题意来说有几个可以免费的点就有几层,而且这个分层的权值为0(这样就相当于免费了), 怎么来理解这个意思呢?就是相当于这个dijstra算法它遍历的不再是一个一维图而是一个三维图,本质还是一样的,由于我们储存的边信息用的是链式前向星,所有所有的边都是按照顺序结构存放在一个一个顺序表中,所以我们不用担心空间复杂度的问题,只需要担心时间复杂度,但是由于我们用到了对堆优化。这一题就是相当于将前面的堆优化就上dijstra算法加上链式前向星重新复习一遍。

代码如下

#include<iostream>
#include<queue>
#include<string.h>
using namespace std;
const int M = 2e5;
const int N = 5e6;
int ans[N], cnt = 0, head[N], s, t, n, m, k;
bool vis[N];
//优先队列的结构体
struct node {int id;int dis;bool operator< (const node& x) const {return x.dis < dis;}
};
//优先队列
priority_queue<node> q;
//边的结构体
struct EDGE
{int next;int w;int to;
}e[N];
//键边函数
void add(int u, int v, int w)
{e[++cnt].w = w;e[cnt].to = v;e[cnt].next = head[u];head[u] = cnt;
}
//dijstra函数
void dijstra()
{ans[s] = 0;q.push(node{ s,0 });while (!q.empty()){node tmp = q.top();q.pop();int k = tmp.id;if (vis[k])continue;vis[k] = true;for (int i = head[k]; i != 0; i = e[i].next){int to = e[i].to;if (!vis[to] && ans[to] > ans[k] + e[i].w){ans[to] = ans[k] + e[i].w;q.push(node{ to,ans[to] });}}}
}int main()
{cin >> n >> m >> k;cin >> s >> t;s++;t++;memset(ans, 0x3f, sizeof(ans));for (int i = 1; i <= m; i++){int u, v, w;cin >> u >> v >> w;++u;++v;add(u, v, w);add(v, u, w);for (int j = 1; j <= k; j++) {add(u + (j - 1) * n, v + j * n, 0);add(v + (j - 1) * n, u + j * n, 0);add(v + j * n, u + j * n, w);add(u + j * n, v + j * n, w);}}dijstra();int anss = 0x7fffffff;for (int i = 0; i <= k; i++){if (anss > ans[t + i * n]){anss = ans[t + i * n];}}cout << anss << endl;return 0;
}

选数

为什么要重新写一下这一题,因为我在这题错过两遍了,为了防止错三遍 ,再写一遍,结果终于是在没有外力靠住下写出来了
主要思路还是深搜:在dfs函数中需要定义三个变量,第一是就是一记录有多少个答案,第二就是就是for循环的下标,第三就是sum用于记录这个和。

代码如下(我竟然真的靠自己完全写出来的)

#include<iostream>
#include<queue>
#include<algorithm>
#include<cmath>
using namespace std;
int n,m;
int a[100000];
bool ispear(int x)
{if(x==1)return false;if(x==2)return true;if(x>3){for(int i=2;i<=sqrt(x);i++){if(x%i==0)return false;}}return true;
}
int ans=0;
void dfs(int sum,int step,int cnt)
{if(cnt>=m){if(ispear(sum)){ans++;}return ;}for(int i=step+1;i<=n;i++){dfs(sum+a[i],i,cnt+1);}
}
int main()
{cin>>n>>m;for(int i=1;i<=n;i++)cin>>a[i];dfs(0,0,0);cout<<ans<<endl;return 0;
}

这篇关于飞行路线(分层图+dijstra+堆优化)(加上题目选数复习)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719334

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业