时间序列预测模型:ARIMA模型

2024-02-17 19:12

本文主要是介绍时间序列预测模型:ARIMA模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. ARIMA模型原理介绍

ARIMA模型,全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model),是一种常用的时间序列预测方法。ARIMA模型通过对时间序列数据的差分化处理,使非平稳时间序列数据变得平稳,进而利用自回归(AR)滑动平均(MA) 模型对其进行建模和预测。ARIMA模型可以表示为ARIMA(p, d, q),其中:

p:自回归项的阶数,表示预测值与过去值之间的关系。

d:差分次数,使序列平稳所需的差分次数。

q:移动平均项的阶数,表示预测误差与过去误差之间的关系。

2. 实例分析

接下来我们使用一个销售数据来进行ARIMA预测,数据第1列为日期,第2列为销量,利用现有数据预测未来10天的销量数据。

(1)首先读取数据,如何绘制历史数据变化趋势图。

clc,clear
T = readtable('arima_data.xls');
T.Properties.VariableNames
dates=T.x__
sales=T.x___1
plot(dates, sales);
xlabel('日期');
ylabel('销量');
title('销量随时间的变化');

结果如下:

(2)进行平稳性检验、ACF检验、PACF检验,然后确定最合适的p、d、q组合。

% 使用 adftest 检查平稳性
isStationary = adftest(sales);
if ~isStationary% 如果非平稳,进行一阶差分salesDiff = diff(sales);% 重新检查差分后序列的平稳性isStationary = adftest(salesDiff);% 如果还是非平稳,可能需要进行更多的差分操作
end
% 绘制ACF和PACF图
figure;
subplot(2,1,1);
autocorr(salesDiff); % 对差分后的序列绘制ACF图
subplot(2,1,2);
parcorr(salesDiff); % 对差分后的序列绘制PACF图
% 尝试多个p和q的组合
minBIC = Inf;
bestModel = [];
for p = 0:3 % 假设测试p的范围为0到3for q = 0:3 % 假设测试q的范围为0到3model = arima(p,1,q);[fit,~,logL] = estimate(model, sales, 'Display', 'off');[aic,bic] = aicbic(logL, p+q+1, length(sales));if bic < minBICminBIC = bic;bestModel = fit;endend
end
bestModel

平稳性检验: 非平稳

ACF检验和PACF检验:


最优模型:

(3)建立模型进行预测

model = arima(1,1,0); % ARIMA(1,1,0)模型
fitModel = estimate(model, sales);
numPeriods = 10; % 预测未来10个时间点
[forecast, ~, ~] = forecast(fitModel, numPeriods, 'Y0', sales)
futureDates = dates(end) + (1:numPeriods)' % 生成未来日期
figure;
plot([dates;futureDates(1)], [sales;forecast(1)], 'b', futureDates, forecast, 'r'); % 绘制实际销量和预测销量
xlabel('日期');
ylabel('销量');
legend({'实际销量', '预测销量'}, 'Location', 'best');
title('销量预测');

ARIMA(1,1,0)模型:

ARIMA(1,1,0) Model (Gaussian Distribution):Value     StandardError    TStatistic      PValue  _______    _____________    __________    __________Constant     23.116        13.829         1.6716        0.094607
AR{1}       0.54589       0.11588          4.711       2.465e-06
Variance     5389.9        1084.4         4.9705      6.6791e-07

预测结果图:

这篇关于时间序列预测模型:ARIMA模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718730

相关文章

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

如何使用 Bash 脚本中的time命令来统计命令执行时间(中英双语)

《如何使用Bash脚本中的time命令来统计命令执行时间(中英双语)》本文介绍了如何在Bash脚本中使用`time`命令来测量命令执行时间,包括`real`、`user`和`sys`三个时间指标,... 使用 Bash 脚本中的 time 命令来统计命令执行时间在日常的开发和运维过程中,性能监控和优化是不

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Java将时间戳转换为Date对象的方法小结

《Java将时间戳转换为Date对象的方法小结》在Java编程中,处理日期和时间是一个常见需求,特别是在处理网络通信或者数据库操作时,本文主要为大家整理了Java中将时间戳转换为Date对象的方法... 目录1. 理解时间戳2. Date 类的构造函数3. 转换示例4. 处理可能的异常5. 考虑时区问题6.

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验