【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目

2024-02-17 06:36

本文主要是介绍【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

C F 786 B − L e g a c y \mathrm{CF786B - Legacy} CF786BLegacy

D e s c r i p t i o n \mathrm{Description} Description

给定 1 1 1 n n n 个点的有向图,初始没有边,接下来有 q q q 次操作,形式如下:

  • 1 u v w 表示从 u u u v v v 连接 1 1 1 条长度为 w w w 的有向边
  • 2 u l r w 表示从 u u u i i i i ∈ [ l , r ] i\in [l,r] i[l,r])连接 1 1 1 条长度为 w w w 的有向边
  • 3 u l r w 表示从 i i i i ∈ [ l , r ] i\in [l,r] i[l,r])向 u u u 连接 1 1 1 条长度为 w w w 的有向边

输出从 S S S 点到 i i i 点( i ∈ [ 1 , n ] i\in [1,n] i[1,n])的最短路长度。

S o l u t i o n \mathrm{Solution} Solution

观察可知,最多会建立 1 0 5 × 1 0 5 = 1 0 10 10^5\times 10^5 = 10^{10} 105×105=1010 条边,故必定超时。

此时,需要使用 线段树优化建图,这里展开简单说一下:

对于 1 1 1 棵存储点为 1 ∼ 4 1\sim 4 14 的线段树,形式如下:

image-20240215212043652

如果当前为 2 2 2 操作,且为 1 ∼ 3 1\sim 3 13 每个点连向 4 4 4,权值为 10 10 10,操作如下所示:

image-20240215212212466

即,将区间 1 ∼ 2 1\sim 2 12 3 ∼ 3 3\sim 3 33 连向 4 4 4 即可,不过此时发现,图中为有向图,而现在是无向图所以我们要对于图中的每一条边标记方向和权值(这里线段树就是一张图,叶子节点就是我们的 1 ∼ n 1\sim n 1n 节点)

image-20240215212641895

其中,为何线段树上的边方向都为向父亲节点?那是因为 1 1 1 2 2 2 号点只有这样才能顺着边走到 4 4 4 号节点,对于为何权值设为 0 0 0,因为这是 1 1 1 条虚边(不存在的),不能对最短路做出任何贡献。

不过,上文是区间连节点,当是节点连区间的时候(操作 3 3 3)边都是正好反着的,所以再建 1 1 1 棵线段树即可(不过没必要真的去再建 1 1 1 棵,具体见代码)

C o d e Code Code

#include <bits/stdc++.h>
#define int long longusing namespace std;typedef pair<int, int> PII;
typedef long long LL;const int SIZE = 4e6 + 10, SIZE2 = 1e6 + 10;int N, Q, S;
int h[SIZE2], e[SIZE], ne[SIZE], w[SIZE], idx;
int Id[2], Dist[SIZE2], Vis[SIZE2];
struct Segment
{int l, r;int L, R;
}Tree[SIZE2 << 2];void add(int a, int b, int c)
{e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx ++;
}int Build(int l, int r, int Sd, int k)
{if (l == r){Tree[l] = {l, l};return l;}int P = ++ Id[k];Tree[P] = {l, r};int mid = l + r >> 1;Tree[P].L = Build(l, mid, Sd, k), Tree[P].R = Build(mid + 1, r, Sd, k);if (!Sd) add(Tree[P].L, P, 0), add(Tree[P].R, P, 0);else add(P, Tree[P].L, 0), add(P, Tree[P].R, 0);return P;
}void Add(int u, int l, int r, int p, int w, int Sd)
{if (Tree[u].l >= l && Tree[u].r <= r){if (!Sd) add(u, p, w);else add(p, u, w);return;}int mid = Tree[u].l + Tree[u].r >> 1;if (mid >= l) Add(Tree[u].L, l, r, p, w, Sd);if (mid < r) Add(Tree[u].R, l, r, p, w, Sd);
}void Dijkstra(int S)
{memset(Dist, 0x3f, sizeof Dist);memset(Vis, 0, sizeof Vis);priority_queue<PII, vector<PII>, greater<PII>> Heap;Heap.push({0, S}), Dist[S] = 0;while (Heap.size()){auto Tmp = Heap.top();Heap.pop();int u = Tmp.second;if (Vis[u]) continue;Vis[u] = 1;for (int i = h[u]; ~i; i = ne[i]){int j = e[i];if (Dist[j] > Dist[u] + w[i]){Dist[j] = Dist[u] + w[i];Heap.push({Dist[j], j});}}}
}signed main()
{cin.tie(0);cout.tie(0);ios::sync_with_stdio(0);memset(h, -1, sizeof h);cin >> N >> Q >> S;if (N == 1){cout << 0 << endl;return 0;}Id[0] = N;Build(1, N, 0, 0);Id[1] = Id[0];Build(1, N, 1, 1);while (Q --){int Op, v, u, l, r, w;cin >> Op >> u;if (Op == 1){cin >> v >> w;add(u, v, w);}else if (Op == 2){cin >> l >> r >> w;Add(Id[0] + 1, l, r, u, w, 1);}else{cin >> l >> r >> w;Add(N + 1, l, r, u, w, 0);}}Dijkstra(S);for (int i = 1; i <= N; i ++)if (Dist[i] >= 1e18) cout << -1 << " ";else cout << Dist[i] << " ";return 0;
}

这篇关于【图论经典题目讲解】CF786B - Legacy 一道线段树优化建图的经典题目的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716955

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

MySQL中慢SQL优化的不同方式介绍

《MySQL中慢SQL优化的不同方式介绍》慢SQL的优化,主要从两个方面考虑,SQL语句本身的优化,以及数据库设计的优化,下面小编就来给大家介绍一下有哪些方式可以优化慢SQL吧... 目录避免不必要的列分页优化索引优化JOIN 的优化排序优化UNION 优化慢 SQL 的优化,主要从两个方面考虑,SQL 语

MySQL中慢SQL优化方法的完整指南

《MySQL中慢SQL优化方法的完整指南》当数据库响应时间超过500ms时,系统将面临三大灾难链式反应,所以本文将为大家介绍一下MySQL中慢SQL优化的常用方法,有需要的小伙伴可以了解下... 目录一、慢SQL的致命影响二、精准定位问题SQL1. 启用慢查询日志2. 诊断黄金三件套三、六大核心优化方案方案

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++快速排序超详细讲解

《C++快速排序超详细讲解》快速排序是一种高效的排序算法,通过分治法将数组划分为两部分,递归排序,直到整个数组有序,通过代码解析和示例,详细解释了快速排序的工作原理和实现过程,需要的朋友可以参考下... 目录一、快速排序原理二、快速排序标准代码三、代码解析四、使用while循环的快速排序1.代码代码1.由快