DSA 经典数据结构与算法 学习心得和知识总结(三) |有向无环图及其应用

本文主要是介绍DSA 经典数据结构与算法 学习心得和知识总结(三) |有向无环图及其应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


注:提前言明 本文借鉴了以下博主、书籍或网站的内容,其列表如下:

1、参考书籍:《算法导论》第三版      就是这本被封神的杰作,就是它🤦
2、参考书籍:《数据结构》严奶奶版
3、参考书籍:《数据结构》(用面向对象方法与C++语言描述) 第二版 殷人昆版
4、参考书籍:《数据结构》(C++版) 第三版 邓俊辉版
5、华中科技大学 有向无环图及应用 公开课,点击前往
6、OI Wiki 有向无环图,点击前往
7、OI Wiki 拓扑排序,点击前往
8、关键路径 + 拓扑排序,点击前往


DSA 经典数据结构与算法 有向无环图

  • 文章快速说明索引
  • 有向无环图的背景
    • 拓扑排序
    • 逆拓扑排序
    • AOV 网
    • 关键路径和 AOE 网


在这里插入图片描述


文章快速说明索引

学习目标:

前言:还记得在大学的时候,数据结构作为计算机科学与技术专业最重要的一门课 当时学校采用的教材是严奶奶的粉红色那本,不过当时是真的不愿多看一眼 😂 苦涩难懂 又非常深奥,满篇伪代码实现的例子和夏日那十分惬意的下午 简直让人头大而晕!

也可能是上学那会儿年少浮躁,也可能是因为当时的能力比较的菜吧 ┑( ̄Д  ̄)┍ 。现在再回头捧读厚厚的《算法导论》,竟然有一种说不上来的快乐 沉浸在数据结构和算法之美,惊叹于高超技巧式拍案惊奇!


学习内容:(详见目录)

1、数据结构与算法(DSA)之有向无环图


学习时间:

2024年02月15日 14:17:05


学习产出:

1、CSDN 技术博客 1篇


有向无环图的背景

有向无环图(Directed Acyclic Graph):一个无环的有向图。

  1. 其性质如下:
  • 拓扑排序 的图,一定是有向无环图;如果有环,那么环上的任意两个节点在任意序列中都不满足条件了
  • 有向无环图,一定能拓扑排序;(归纳法)假设节点数不超过 k 的 有向无环图都能拓扑排序,那么对于节点数等于 k 的,考虑执行拓扑排序第一步之后的情形即可

  1. 如何判定一个图是否是有向无环图呢?
  • 检验它是否可以进行 拓扑排序 即可
  • 当然也有另外的方法,可以对图进行一遍 DFS,在得到的 DFS 树上看看有没有连向祖先的非树边(返祖边)。如果有的话,那就有环了

接下来看一下 DAG 的应用, 如下:

一、描述表达式:

// 如下表达式含 + * 操作((a + b) * (b * (c + d)) + (c + d) * e) * ((c + d) * e)

用二叉树表示这个表达式,(21个顶点)如下:

在这里插入图片描述

用有向无环图表示该表达式,(12个顶点)如下:

在这里插入图片描述


二、表示 AOV网 (Activity On Vertex Network) or AOE网(Activity On Edge)

在这里插入图片描述

  • 什么是AOV网与AOE网?——以及AOV网与AOE网区别和运用,点击前往

下面我们再详细介绍它们!


拓扑排序

拓扑排序的英文名是 Topological sorting。拓扑排序要解决的问题是给一个有向无环图的所有节点排序。换言之:其是一个有向无环图(DAG,Directed Acyclic Graph)的所有顶点的线性序列,且该序列必须满足下面两个条件:

  • 每个顶点出现且只出现一次
  • 若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面
  • 有向无环图(DAG)才有拓扑排序,非DAG就没有拓扑排序一说

一个经典的案例,如下:

在这里插入图片描述

因此我们可以说:

  • 在一个 DAG(有向无环图) 中,我们将图中的顶点以线性方式进行排序,使得对于任何的顶点 u 到 v 的有向边 (u,v),都可以有 u 在 v 的前面
  • 还有给定一个 DAG,如果从 i 到 j 有边,则认为 j 依赖于 i。如果 i 到 j 有路径(i 可达 j),则称 j 间接依赖于 i
  • 拓扑排序的目标是将所有节点排序,使得排在前面的节点不能依赖于排在后面的节点

举一个例子,如下:

  • 拓扑排序(Topological Sorting),点击前往

在这里插入图片描述


逆拓扑排序

逆拓扑排序的步骤:

  • 从AOV网中选择一个出度为0的顶点并输出
  • 从网中删除该顶点和所有以它为终点的有向边
  • 重复1和2,直到当前的AOV网为空

AOV 网

日常生活中,一项大的工程可以看作是由若干个子工程组成的集合,这些子工程之间必定存在一定的先后顺序,即某些子工程必须在其他的一些子工程完成后才能开始。

我们用有向图来表现子工程之间的先后关系,子工程之间的先后关系为有向边,这种有向图称为顶点活动网络,即 AOV 网 (Activity On Vertex Network)。一个 AOV 网必定是一个有向无环图,即不带有回路。与 DAG 不同的是,AOV 的活动都表示在边上。

在 AOV 网中,顶点表示活动,弧表示活动间的优先关系。AOV 网中不应该出现环,这样就能够找到一个顶点序列,使得每个顶点代表的活动的前驱活动都排在该顶点的前面,这样的序列称为拓扑序列(一个 AOV 网的拓扑序列不是唯一的),由 AOV 网构造拓扑序列的过程称为拓扑排序。因此,拓扑排序也可以解释为将 AOV 网中所有活动排成一个序列,使得每个活动的前驱活动都排在该活动的前面(一个 AOV 网中的拓扑排序也不是唯一的)。

  • 前驱活动:有向边起点的活动称为终点的前驱活动(只有当一个活动的前驱全部都完成后,这个活动才能进行)
  • 后继活动:有向边终点的活动称为起点的后继活动

检测 AOV 网中是否带环的方式是构造拓扑序列,看是否包含所有顶点。构造这个拓扑序列步骤:

  1. 从图中选择一个入度为零的点
  2. 输出该顶点,从图中删除此顶点及其所有的出边
  3. 重复上面两步,直到所有顶点都输出,拓扑排序完成,或者图中不存在入度为零的点,此时说明图是有环图,拓扑排序无法完成,陷入死锁

关键路径和 AOE 网

与 AOV 网对应的是 AOE 网(Activity On Edge Network) 即边表示活动的网。AOE 网是一个带权的有向无环图,其中,顶点表示事件,弧表示活动持续的时间。通常,AOE 网可以用来估算工程的完成时间。AOE 网应该是无环的,且存在唯一入度为零的起始顶点(源点),以及唯一出度为零的完成顶点(汇点)。

在这里插入图片描述

AOE 网中的有些活动是可以并行进行的,所以完成整个工程的最短时间是从开始点到完成点的最长活动路径长度(这里所说的路径长度是指路径上各活动的持续时间之和,即弧的权值之和,不是路径上弧的数目)。因为一项工程需要完成所有工程内的活动,所以最长的活动路径也是关键路径,它决定工程完成的总时间。


AOE 网的相关基本概念,如下:

  • 活动:AOE 网中,弧表示活动。弧的权值表示活动持续的时间,活动在事件被触发后开始。
  • 事件:AOE 网中,顶点表示事件,事件能被触发。

  • 弧(活动)aj 的最早开始时间:初始点到该弧起点的最长路径长度,记为 e(j)。
  • 弧(活动)aj 的最迟开始时间:在不推迟整个工期的前提下,工程达到弧起点所表示的状态最晚能容忍的时间,记为 l(j)。即:事件的最迟发生时间 - 弧的活动时间值。

  • 顶点(事件)vj 的最早发生时间:初始点到该顶点的最长路径长度,记为 ve(j),它决定了以该顶点开始的活动的最早发生时间,所以 ve(j) = e(j)。
  • 顶点(事件)vj 的最迟发生时间:在不推迟整个工期的前提下,工程达到顶点所表示的状态最晚能容忍的时间,记为 vl(j),它决定了所有以该状态结束的活动的最迟发生时间,所以 l(j) = vl(j) - dul(aj)。

  • 关键路径:AOE 网中从源点到汇点的最长路径的长度。
  • 关键活动:关键路径上的活动,最早开始时间和最迟开始时间相等(看下面时间余量d(j) = 0的)。

最早和最迟发生时间的递推关系:

在这里插入图片描述

按拓扑顺序求,最早是从前往后,前驱顶点的最早开始时间与边的权重之和最大者;最迟是从后往前,后继顶点的最迟开始时间与边的权重之差的最小者。


下面看一个例子,计算如下:

在这里插入图片描述

如上图,其其中之一的拓扑排序,如下:

V1 V3 V2 V5 V4 V6
V1V2V3V4V5V6
ve(j):事件 的最早发生时间 ->0326 max68 max
vl(j):事件 的最迟发生时间 <-04 min2 min678
a1a2a3a4a5a6a7a8
e(j):活动 aj 的最早开始时间 ->00332266
l(j):活动 aj 的最迟开始时间 <-4 - 32 - 26 - 27 - 36 - 48 - 38 - 28 - 1
l(j):活动 aj 的最迟开始时间 <-10442567
d(j):活动 aj 的时间余量 l(j) - e(j)10110301

于是关键活动有:a2 a5 a7。如下:

在这里插入图片描述

V1->V3->V4->V6 就是关键路径,total = 8!


关键路径算法:

  1. 输入 e 条弧 (j,k),建立 AOE 网;
  2. 从源点 v0 出发,令 ve[0] = 0, 按照拓扑排序求其余各个顶点的最早发生时间 ve[i], (i <= i <= n-1)。如果得到的拓扑有序序列中顶点的个数小于网中的顶点数 n,则说明网中存在环,不能求关键路径,算法终止;否则执行步骤 3;
  3. 从汇点 vn 出发,令 vl[n-1] = ve[n-1],按照逆拓扑有序求其余各顶点的最迟发生时间 vl[i], (n-2 >= i >= 2);
  4. 根据各顶点的 ve 和 vl 值,求每条弧 s 的最早开始时间 e(s) 和最迟开始时间 l(s)。若某条弧满足条件 e(s) = l(s), 则为关键活动。

这篇关于DSA 经典数据结构与算法 学习心得和知识总结(三) |有向无环图及其应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716351

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1394(线段树点更新的应用)

题意:求一个序列经过一定的操作得到的序列的最小逆序数 这题会用到逆序数的一个性质,在0到n-1这些数字组成的乱序排列,将第一个数字A移到最后一位,得到的逆序数为res-a+(n-a-1) 知道上面的知识点后,可以用暴力来解 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#in