基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench

2024-02-16 09:12

本文主要是介绍基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

4.1 ECG信号的特点与噪声

4.2 FPGA在ECG信号处理中的应用

4.3 ECG信号滤波原理

4.4 心率计算原理

4.5 FPGA在ECG信号处理中的优势

5.算法完整程序工程


1.算法运行效果图预览

其RTL结构如下:

2.算法运行软件版本

vivado2019.2

3.部分核心程序

...................................................................//调用心率数据
ECG_data ECG_data_u(.i_clk (i_clk), .i_rst (i_rst), .o_data(o_data));//low filter
wire signed[31:0]w_channel_output1;fir_lower fir_lower_u(.aresetn            (~i_rst), // input sclr.aclk               (i_clk), // input clk.s_axis_data_tvalid (1'b1), // output rfd.s_axis_data_tready (),.s_axis_data_tdata  ({o_data[11],o_data[11],o_data[11],o_data[11],o_data}), .m_axis_data_tvalid (), .m_axis_data_tdata(w_channel_output1) // output [24 : 0] dout
);
assign o_data_filter1=w_channel_output1[25:10];//high filter//这里和论文不一样,我再增加一个高频滤波
wire signed[31:0]w_channel_output2;
fir_higher higher_filter_u(.aresetn            (~i_rst), // input sclr.aclk               (i_clk), // input clk.s_axis_data_tvalid (1'b1), // output rfd.s_axis_data_tready (),.s_axis_data_tdata  ({o_data_filter1}), .m_axis_data_tvalid (), .m_axis_data_tdata(w_channel_output2) // output [24 : 0] dout
);assign o_data_filter2=w_channel_output2[25:10];//平均滤波
avg_filters avg_filters_u(.i_clk       (i_clk), .i_rst       (i_rst), .i_data      (o_data_filter2), .o_avg_filter(o_data_avgfilter));//===============================================================
wire[15:0]o_pv2_1;dyn_lvl dyn_lvl_u(.i_clk   (i_clk), .i_rst   (i_rst), .i_agcamp(16'd1500), .i_pv2_1 (o_pv2_1), .o_lvl   (o_lvl));find_heart_max find_heart_max_u(.i_clk      (i_clk), .i_rst      (i_rst), .i_lvl      (o_lvl), .i_peak     (o_data_avgfilter), .o_pv2_1    (o_pv2_1), .o_idx_1    (o_idx_1), .o_delay_cnt(o_delay_cnt), .o_syn      (o_syn), .curr_state (), .cnten      (), .cnt0       (), .cnt1       (), .cnt2       (), .cnt3       (), .cnt4       (), .max_1      (), .max_2      (), .max_3      (), .max_4      ());assign o_peaks = o_pv2_1;//计算心率
heart_rate_cal heart_rate_cal_u(.i_clk(i_clk), .i_rst(i_rst), .i_heart    (o_syn), .o_heartrate(o_heartrate), .o_heartcnt (o_heartcnt));endmodule
37_006m

4.算法理论概述

         心电图(ECG)是医学领域中常用的一种无创检测技术,用于记录和分析心脏的电活动。由于ECG信号微弱且易受到噪声干扰,因此在采集和处理过程中需要进行滤波以提取有效信息。同时,根据滤波后的ECG信号,可以进一步计算心率等生理参数。现场可编程门阵列(FPGA)以其并行处理能力和可重构性,在ECG信号处理中发挥着重要作用。

4.1 ECG信号的特点与噪声

         ECG信号是一种低频、微弱的生物电信号,其频率范围主要集中在0.05Hz至100Hz之间。典型的ECG波形包括P波、QRS波群和T波等。在信号采集过程中,ECG信号容易受到基线漂移、工频干扰、肌电干扰和电极接触噪声等的影响。

4.2 FPGA在ECG信号处理中的应用

       FPGA作为一种高性能的数字信号处理器件,可以实现复杂的数字滤波算法,以去除ECG信号中的噪声干扰。常用的数字滤波器包括低通滤波器、高通滤波器和带通滤波器等。

4.3 ECG信号滤波原理

  1. 低通滤波器:用于去除高频噪声,如肌电干扰和工频干扰。其数学表达式为:

(H(z) = \sum_{k=0}^{N} b_k z^{-k} / \sum_{k=0}^{M} a_k z^{-k})

其中,(H(z))为滤波器的传递函数,(b_k)和(a_k)为滤波器的系数,(N)和(M)为滤波器的阶数。

  1. 高通滤波器:用于去除基线漂移等低频噪声。其数学表达式与低通滤波器类似,但系数不同。

  2. 带通滤波器:结合低通和高通滤波器的特点,仅允许特定频率范围内的信号通过,以提取ECG信号中的有效信息。

4.4 心率计算原理

        心率计算通常基于ECG信号中的R波进行检测。R波是ECG信号中幅度最大、最易于识别的波形之一。通过检测R波的间隔时间(RR间期),可以计算出心率。

        心率(HR)的计算公式为:

        (HR = 60 / RR)

        其中,RR为两个相邻R波的时间间隔(以秒为单位)。

       在FPGA中实现心率计算时,通常需要先对滤波后的ECG信号进行阈值检测或峰值检测,以准确识别R波的位置。然后,通过计时器或计数器测量RR间期,并根据上述公式计算心率。

4.5 FPGA在ECG信号处理中的优势

  1. 并行处理能力:FPGA可以同时处理多个数据通道,实现高速的ECG信号采集和处理。

  2. 可重构性:FPGA可以根据不同的应用需求灵活配置滤波器和心率计算算法。

  3. 低功耗:相比其他高性能处理器,FPGA在功耗方面具有优势,适用于便携式医疗设备。

5.算法完整程序工程

OOOOO

OOO

O

这篇关于基于FPGA的ECG信号滤波与心率计算verilog实现,包含testbench的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/714109

相关文章

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

Android Studio 配置国内镜像源的实现步骤

《AndroidStudio配置国内镜像源的实现步骤》本文主要介绍了AndroidStudio配置国内镜像源的实现步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、修改 hosts,解决 SDK 下载失败的问题二、修改 gradle 地址,解决 gradle

SpringSecurity JWT基于令牌的无状态认证实现

《SpringSecurityJWT基于令牌的无状态认证实现》SpringSecurity中实现基于JWT的无状态认证是一种常见的做法,本文就来介绍一下SpringSecurityJWT基于令牌的无... 目录引言一、JWT基本原理与结构二、Spring Security JWT依赖配置三、JWT令牌生成与

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me