知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18

2024-02-16 05:10

本文主要是介绍知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 最终结论
  • 模型
    • ResNet18, ResNet34
    • CoatNet
  • 数据准备
  • 训练Teacher模型
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 学生网络
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 蒸馏学生网络
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 结果比对
  • 总结

摘要

复杂度的检测模型虽然可以取得SOTA的精度,但它们往往难以直接落地应用。模型压缩方法帮助模型在效率和精度之间进行折中。知识蒸馏是模型压缩的一种有效手段,它的核心思想是迫使轻量级的学生模型去学习教师模型提取到的知识,从而提高学生模型的性能。已有的知识蒸馏方法可以分别为三大类:

  • 基于特征的(feature-based,例如VID、NST、FitNets、fine-grained feature imitation)
  • 基于关系的(relation-based,例如IRG、Relational KD、CRD、similarity-preserving knowledge distillation)
  • 基于响应的(response-based,例如Hinton的知识蒸馏开山之作)
    在这里插入图片描述

今天我们就尝试用基于关系特征的NST知识蒸馏算法完成这篇实战。NST蒸馏是对模型里面的的Block最后一层Feature做蒸馏,所以需要最后一层block的值。所以我们对模型要做修改来适应NST算法,并且为了使Teacher和Student的网络层之间的参数一致,我们这次选用CoatNet作为Teacher模型,选择ResNet18作为Student。

最终结论

先把结论说了吧! Teacher网络使用CoatNet的coatnet_2模型,Student网络使用ResNet18。如下表

网络epochsACC
CoatNet10091%
ResNet1810089%
ResNet18 +NST10090%

在这里插入图片描述

模型

模型没有用pytorch官方自带的,而是参照以前总结的ResNet模型修改的。ResNet模型结构如下图:
在这里插入图片描述

ResNet18, ResNet34

ResNet18, ResNet34模型的残差结构是一致的,结构如下:
在这里插入图片描述
代码如下:
resnet.py

import torch
import torchvision
from torch import nn
from torch.nn import functional as F
# from torchsummary import summaryclass ResidualBlock(nn.Module):"""实现子module: Residual Block"""def __init__(self, inchannel, outchannel, stride=1, shortcut=None):super(ResidualBlock, self).__init__()self.left = nn.Sequential(nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU(inplace=True),nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),nn.BatchNorm2d(outchannel))self.right = shortcutdef forward(self, x):out = self.left(x)residual = x if self.right is None else self.right(x)out += residualreturn F.relu(out)class ResNet(nn.Module):"""实现主module:ResNet34ResNet34包含多个layer,每个layer又包含多个Residual block用子module来实现Residual block,用_make_layer函数来实现layer"""def __init__(self, blocks, num_classes=1000):super(ResNet, self).__init__()self.model_name = 'resnet34'# 前几层: 图像转换self.pre = nn.Sequential(nn.Conv2d(3, 64, 7, 2, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(3, 2, 1))# 重复的layer,分别有3,4,6,3个residual blockself.layer1 = self._make_layer(64, 64, blocks[0])self.layer2 = self._make_layer(64, 128, blocks[1], stride=2)self.layer3 = self._make_layer(128, 256, blocks[2], stride=2)self.layer4 = self._make_layer(256, 512, blocks[3], stride=2)# 分类用的全连接self.fc = nn.Linear(512, num_classes)def _make_layer(self, inchannel, outchannel, block_num, stride=1):"""构建layer,包含多个residual block"""shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU())layers = []layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))for i in range(1, block_num):layers.append(ResidualBlock(outchannel, outchannel))return nn.Sequential(*layers)def forward(self, x):x = self.pre(x)l1_out = self.layer1(x)l2_out = self.layer2(l1_out)l3_out = self.layer3(l2_out)l4_out = self.layer4(l3_out)p_out = F.avg_pool2d(l4_out, 7)fea = p_out.view(p_out.size(0), -1)out=self.fc(fea)return l1_out,l2_out,l3_out,l4_out,fea,outdef ResNet18():return ResNet([2, 2, 2, 2])def ResNet34():return ResNet([3, 4, 6, 3])if __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = ResNet34()model.to(device)# summary(model, (3, 224, 224))

主要修改了输出结果,将每个block的结果输出出来。

CoatNet

代码:
coatnet.py

import torch
import torch.nn as nnfrom einops import rearrange
from einops.layers.torch import Rearrangedef conv_3x3_bn(inp, oup, image_size, downsample=False):stride = 1 if downsample == False else 2return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.GELU())class PreNorm(nn.Module):def __init__(self, dim, fn, norm):super().__init__()self.norm = norm(dim)self.fn = fndef forward(self, x, **kwargs):return self.fn(self.norm(x), **kwargs)class SE(nn.Module):def __init__(self, inp, oup, expansion=0.25):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(oup, int(inp * expansion), bias=False),nn.GELU(),nn.Linear(int(inp * expansion), oup, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * yclass FeedForward(nn.Module):def __init__(self, dim, hidden_dim, dropout=0.):super().__init__()self.net = nn.Sequential(nn.Linear(dim, hidden_dim),nn.GELU(),nn.Dropout(dropout),nn.Linear(hidden_dim, dim),nn.Dropout(dropout))def forward(self, x):return self.net(x)class MBConv(nn.Module):def __init__(self, inp, oup, image_size, downsample=False, expansion=4):super().__init__()self.downsample = downsamplestride = 1 if self.downsample == False else 2hidden_dim = int(inp * expansion)if self.downsample:self.pool = nn.MaxPool2d(3, 2, 1)self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False)if expansion == 1:self.conv = nn.Sequential(# dwnn.Conv2d(hidden_dim, hidden_dim, 3, stride,1, groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),# pw-linearnn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)else:self.conv = nn.Sequential(# pw# down-sample in the first convnn.Conv2d(inp, hidden_dim, 1, stride, 0, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),# dwnn.Conv2d(hidden_dim, hidden_dim, 3, 1, 1,groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),SE(inp, hidden_dim),# pw-linearnn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)self.conv = PreNorm(inp, self.conv, nn.BatchNorm2d)def forward(self, x):if self.downsample:return self.proj(self.pool(x)) + self.conv(x)else:return x + self.conv(x)class Attention(nn.Module):def __init__(self, inp, oup, image_size, heads=8, dim_head=32, dropout=0.):super().__init__()inner_dim = dim_head * headsproject_out = not (heads == 1 and dim_head == inp)self.ih, self.iw = image_sizeself.heads = headsself.scale = dim_head ** -0.5# parameter table of relative position biasself.relative_bias_table = nn.Parameter(torch.zeros((2 * self.ih - 1) * (2 * self.iw - 1), heads))coords = torch.meshgrid((torch.arange(self.ih), torch.arange(self.iw)))coords = torch.flatten(torch.stack(coords), 1)relative_coords = coords[:, :, None] - coords[:, None, :]relative_coords[0] += self.ih - 1relative_coords[1] += self.iw - 1relative_coords[0] *= 2 * self.iw - 1relative_coords = rearrange(relative_coords, 'c h w -> h w c')relative_index = relative_coords.sum(-1).flatten().unsqueeze(1)self.register_buffer("relative_index", relative_index)self.attend = nn.Softmax(dim=-1)self.to_qkv = nn.Linear(inp, inner_dim * 3, bias=False)self.to_out = nn.Sequential(nn.Linear(inner_dim, oup),nn.Dropout(dropout)) if project_out else nn.Identity()def forward(self, x):qkv = self.to_qkv(x).chunk(3, dim=-1)q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale# Use "gather" for more efficiency on GPUsrelative_bias = self.relative_bias_table.gather(0, self.relative_index.repeat(1, self.heads))relative_bias = rearrange(relative_bias, '(h w) c -> 1 c h w', h=self.ih*self.iw, w=self.ih*self.iw)dots = dots + relative_biasattn = self.attend(dots)out = torch.matmul(attn, v)out = rearrange(out, 'b h n d -> b n (h d)')out = self.to_out(out)return outclass Transformer(nn.Module):def __init__(self, inp, oup, image_size, heads=8, dim_head=32, downsample=False, dropout=0.):super().__init__()hidden_dim = int(inp * 4)self.ih, self.iw = image_sizeself.downsample = downsampleif self.downsample:self.pool1 = nn.MaxPool2d(3, 2, 1)self.pool2 = nn.MaxPool2d(3, 2, 1)self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False)self.attn = Attention(inp, oup, image_size, heads, dim_head, dropout)self.ff = FeedForward(oup, hidden_dim, dropout)self.attn = nn.Sequential(Rearrange('b c ih iw -> b (ih iw) c'),PreNorm(inp, self.attn, nn.LayerNorm),Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw))self.ff = nn.Sequential(Rearrange('b c ih iw -> b (ih iw) c'),PreNorm(oup, self.ff, nn.LayerNorm),Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw))def forward(self, x):if self.downsample:x = self.proj(self.pool1(x)) + self.attn(self.pool2(x))else:x = x + self.attn(x)x = x + self.ff(x)return xclass CoAtNet(nn.Module):def __init__(self, image_size, in_channels, num_blocks, channels, num_classes=1000, block_types=['C', 'C', 'T', 'T']):super().__init__()ih, iw = image_sizeblock = {'C': MBConv, 'T': Transformer}self.s0 = self._make_layer(conv_3x3_bn, in_channels, channels[0], num_blocks[0], (ih // 2, iw // 2))self.s1 = self._make_layer(block[block_types[0]], channels[0], channels[1], num_blocks[1], (ih // 4, iw // 4))self.s2 = self._make_layer(block[block_types[1]], channels[1], channels[2], num_blocks[2], (ih // 8, iw // 8))self.s3 = self._make_layer(block[block_types[2]], channels[2], channels[3], num_blocks[3], (ih // 16, iw // 16))self.s4 = self._make_layer(block[block_types[3]], channels[3], channels[4], num_blocks[4], (ih // 32, iw // 32))self.pool = nn.AvgPool2d(ih // 32, 1)self.fc = nn.Linear(channels[-1], num_classes, bias=False)def forward(self, x):x = self.s0(x)l1_out = self.s1(x)l2_out = self.s2(l1_out)l3_out = self.s3(l2_out)l4_out = self.s4(l3_out)fea = self.pool(l4_out).view(-1, l4_out.shape[1])out = self.fc(fea)return l1_out,l2_out,l3_out,l4_out,fea, outdef _make_layer(self, block, inp, oup, depth, image_size):layers = nn.ModuleList([])for i in range(depth):if i == 0:layers.append(block(inp, oup, image_size, downsample=True))else:layers.append(block(oup, oup, image_size))return nn.Sequential(*layers)def coatnet_0():num_blocks = [2, 2, 3, 5, 2]            # Lchannels = [64, 96, 192, 384, 768]      # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_1():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [64, 96, 192, 384, 768]      # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_2():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [128, 128, 256, 512, 1026]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_3():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [192, 192, 384, 768, 1536]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_4():num_blocks = [2, 2, 12, 28, 2]          # Lchannels = [192, 192, 384, 768, 1536]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)if __name__ == '__main__':img = torch.randn(1, 3, 224, 224)net = coatnet_0()out = net(img)print(out.shape, count_parameters(net))net = coatnet_1()out = net(img)print(out.shape, count_parameters(net))net = coatnet_2()out = net(img)print(out.shape, count_parameters(net))net = coatnet_3()out = net(img)print(out.shape, count_parameters(net))net = coatnet_4()out = net(img)print(out.shape, count_parameters(net))

同上,将每个block层都输出出来。

数据准备

数据使用我以前在图像分类任务中的数据集——植物幼苗数据集,先将数据集转为训练集和验证集。执行代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

训练Teacher模型

Teacher选用CoatNet的coatnet_2模型。这个模型在训练100个epoch后,在验证集上,最高成绩是91%。

步骤

新建teacher_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.coatnet import coatnet_2import json
import os

导入所需的库

定义训练和验证函数

编写train方法和val方法,由于修改输出的结果,所以返回结果又多个,如果不想对每个返回结果命名,可以使用下划线代替。

def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)_,_,_,l4_out,fea,output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'CoatNet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

全局参数:

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

采用默认的数据读取方式。

设置模型和Loss

    # 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = coatnet_2()num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'CoatNet/model_final.pth')

设置loss为交叉熵。
设置模型为coatnet_2。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
完成上面的代码就可以开始训练Teacher网络了。

学生网络

学生网络选用ResNet18,是一个比较小一点的网络了,模型的大小有40M。训练100个epoch,在验证集上最终的ACC是89%.

步骤

新建student_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.resnet import ResNet18
import json
import os

导入所需的库

定义训练和验证函数

# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)_,_,_,l4_out,fea,out = model(data)loss = criterion(out, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea,out = model(data)loss = criterion(out, target)_, pred = torch.max(out.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc

编写train方法和val函数,由于修改输出的结果,所以返回结果又多个,如果不想对每个返回结果命名,可以使用下划线代替。
在val函数中验证ACC,保存ACC最高的模型。

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

全局参数:

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。

注意这里设置和Teacher模型保持一致,这样得出的结论才更有说服力。

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。
注意:数据增强和Teacher模型里的增强保持一致。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

采用pytorch默认的数据读取方式。

设置模型和Loss

	 # 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result_student.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet/model_final.pth')

设置loss为交叉熵。
设置模型为ResNet18。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
完成上面的代码就可以开始训练Student网络了。

蒸馏学生网络

学生网络继续选用ResNet18,使用Teacher网络蒸馏学生网络,训练100个epoch,最终,验证集的ACC为90%。
NST知识蒸馏的脚本详见:
https://wanghao.blog.csdn.net/article/details/127802486?spm=1001.2014.3001.5502。
代码如下:
nst.py

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F'''
NST with Polynomial Kernel, where d=2 and c=0
'''
class NST(nn.Module):'''Like What You Like: Knowledge Distill via Neuron Selectivity Transferhttps://arxiv.org/pdf/1707.01219.pdf'''def __init__(self):super(NST, self).__init__()def forward(self, fm_s, fm_t):s_H, t_H = fm_s.shape[2], fm_t.shape[2]if s_H > t_H:fm_s = F.adaptive_avg_pool2d(fm_s, (t_H, t_H))elif s_H < t_H:fm_t = F.adaptive_avg_pool2d(fm_t, (s_H, s_H))else:passfm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1)fm_s = F.normalize(fm_s, dim=2)fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1)fm_t = F.normalize(fm_t, dim=2)loss = self.poly_kernel(fm_t, fm_t).mean() \+ self.poly_kernel(fm_s, fm_s).mean() \- 2 * self.poly_kernel(fm_s, fm_t).mean()return lossdef poly_kernel(self, fm1, fm2):fm1 = fm1.unsqueeze(1)fm2 = fm2.unsqueeze(2)out = (fm1 * fm2).sum(-1).pow(2)return out

步骤

新建kd_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from model.resnet import ResNet18
import json
import osfrom nst import NST

导入需要的库,这里要注意,导入的ResNet18是我自定义的模型,不要导入官方自带的ResNet18。

定义训练和验证函数

# 定义训练过程
def train(s_net,t_net, device, criterionCls,criterionKD,train_loader, optimizer, epoch):s_net.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()l1_out_s,l2_out_s,l3_out_s,l4_out_s,fea_s, out_s = s_net(data)cls_loss = criterionCls(out_s, target)l1_out_t,l2_out_t,l3_out_t,l4_out_t,fea_t, out_t = t_net(data)  # 训练出教师的 teacher_outputkd_loss = criterionKD(l4_out_s, l4_out_t.detach()) * lambda_kdloss = cls_loss + kd_lossloss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device,criterionCls, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)l1_out_s, l2_out_s, l3_out_s, l4_out_s, fea_s, out_s = model(data)loss = criterionCls(out_s, target)_, pred = torch.max(out_s.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc

编写train方法和val函数,由于修改输出的结果,所以返回结果有多个,我们需要对l4_out_s这个结果做蒸馏。
将Student的l4_out_s和Teacher的l4_out_t输入到criterionKD这个loss函数中计算loss。
l4_out_t.detach()的意思是阻断Teacher模型的反向传播。
在val函数中验证ACC,保存ACC最高的模型。

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet_kd'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')lambda_kd=1.0

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。
lambda_kd:蒸馏loss的比重,默认是1.0

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。
注意:数据增强和Teacher模型里的增强保持一致。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型和Loss

    model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)teacher_model=torch.load('./CoatNet/best.pth')teacher_model.eval()# 实例化模型并且移动到GPUcriterionKD = NST()criterionCls = nn.CrossEntropyLoss()# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft,teacher_model, DEVICE,criterionCls,criterionKD, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft,DEVICE,criterionCls , test_loader)val_acc_list[epoch]=accwith open('result_kd.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet_kd/model_final.pth')

设置模型为ResNet18。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
加载Teacher模型,并设置为eval模式。
设置蒸馏loss为criterionKD
设置分类loss为交叉熵。
完成上面的代码就可以开始蒸馏模式!!!

结果比对

加载保存的结果,然后绘制acc曲线。

import numpy as np
from matplotlib import pyplot as plt
import json
teacher_file='result.json'
student_file='result_student.json'
student_kd_file='result_kd.json'
def read_json(file):with open(file, 'r', encoding='utf8') as fp:json_data = json.load(fp)print(json_data)return json_datateacher_data=read_json(teacher_file)
student_data=read_json(student_file)
student_kd_data=read_json(student_kd_file)x =[int(x) for x in  list(dict(teacher_data).keys())]
print(x)plt.plot(x, list(teacher_data.values()), label='teacher')
plt.plot(x,list(student_data.values()), label='student without NST')
plt.plot(x, list(student_kd_data.values()), label='student with NST')plt.title('Test accuracy')
plt.legend()plt.show()

最终得到的结果如下图:
在这里插入图片描述

总结

本文重点讲解了如何使用NST知识蒸馏算法对Student模型进行蒸馏。经过蒸馏算法NST训练后,Student模型提高了1%。希望能帮助到大家,如果觉得有用欢迎收藏、点赞和转发;如果有问题也可以留言讨论。
本次实战用到的代码和数据集详见:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87121089?spm=1001.2014.3001.5503

这篇关于知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713579

相关文章

C语言小项目实战之通讯录功能

《C语言小项目实战之通讯录功能》:本文主要介绍如何设计和实现一个简单的通讯录管理系统,包括联系人信息的存储、增加、删除、查找、修改和排序等功能,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录功能介绍:添加联系人模块显示联系人模块删除联系人模块查找联系人模块修改联系人模块排序联系人模块源代码如下

Java中使用Java Mail实现邮件服务功能示例

《Java中使用JavaMail实现邮件服务功能示例》:本文主要介绍Java中使用JavaMail实现邮件服务功能的相关资料,文章还提供了一个发送邮件的示例代码,包括创建参数类、邮件类和执行结... 目录前言一、历史背景二编程、pom依赖三、API说明(一)Session (会话)(二)Message编程客

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可

golang1.23版本之前 Timer Reset方法无法正确使用

《golang1.23版本之前TimerReset方法无法正确使用》在Go1.23之前,使用`time.Reset`函数时需要先调用`Stop`并明确从timer的channel中抽取出东西,以避... 目录golang1.23 之前 Reset ​到底有什么问题golang1.23 之前到底应该如何正确的

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三