知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18

2024-02-16 05:10

本文主要是介绍知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 摘要
  • 最终结论
  • 模型
    • ResNet18, ResNet34
    • CoatNet
  • 数据准备
  • 训练Teacher模型
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 学生网络
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 蒸馏学生网络
    • 步骤
      • 导入需要的库
      • 定义训练和验证函数
      • 定义全局参数
      • 图像预处理与增强
      • 读取数据
      • 设置模型和Loss
  • 结果比对
  • 总结

摘要

复杂度的检测模型虽然可以取得SOTA的精度,但它们往往难以直接落地应用。模型压缩方法帮助模型在效率和精度之间进行折中。知识蒸馏是模型压缩的一种有效手段,它的核心思想是迫使轻量级的学生模型去学习教师模型提取到的知识,从而提高学生模型的性能。已有的知识蒸馏方法可以分别为三大类:

  • 基于特征的(feature-based,例如VID、NST、FitNets、fine-grained feature imitation)
  • 基于关系的(relation-based,例如IRG、Relational KD、CRD、similarity-preserving knowledge distillation)
  • 基于响应的(response-based,例如Hinton的知识蒸馏开山之作)
    在这里插入图片描述

今天我们就尝试用基于关系特征的NST知识蒸馏算法完成这篇实战。NST蒸馏是对模型里面的的Block最后一层Feature做蒸馏,所以需要最后一层block的值。所以我们对模型要做修改来适应NST算法,并且为了使Teacher和Student的网络层之间的参数一致,我们这次选用CoatNet作为Teacher模型,选择ResNet18作为Student。

最终结论

先把结论说了吧! Teacher网络使用CoatNet的coatnet_2模型,Student网络使用ResNet18。如下表

网络epochsACC
CoatNet10091%
ResNet1810089%
ResNet18 +NST10090%

在这里插入图片描述

模型

模型没有用pytorch官方自带的,而是参照以前总结的ResNet模型修改的。ResNet模型结构如下图:
在这里插入图片描述

ResNet18, ResNet34

ResNet18, ResNet34模型的残差结构是一致的,结构如下:
在这里插入图片描述
代码如下:
resnet.py

import torch
import torchvision
from torch import nn
from torch.nn import functional as F
# from torchsummary import summaryclass ResidualBlock(nn.Module):"""实现子module: Residual Block"""def __init__(self, inchannel, outchannel, stride=1, shortcut=None):super(ResidualBlock, self).__init__()self.left = nn.Sequential(nn.Conv2d(inchannel, outchannel, 3, stride, 1, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU(inplace=True),nn.Conv2d(outchannel, outchannel, 3, 1, 1, bias=False),nn.BatchNorm2d(outchannel))self.right = shortcutdef forward(self, x):out = self.left(x)residual = x if self.right is None else self.right(x)out += residualreturn F.relu(out)class ResNet(nn.Module):"""实现主module:ResNet34ResNet34包含多个layer,每个layer又包含多个Residual block用子module来实现Residual block,用_make_layer函数来实现layer"""def __init__(self, blocks, num_classes=1000):super(ResNet, self).__init__()self.model_name = 'resnet34'# 前几层: 图像转换self.pre = nn.Sequential(nn.Conv2d(3, 64, 7, 2, 3, bias=False),nn.BatchNorm2d(64),nn.ReLU(inplace=True),nn.MaxPool2d(3, 2, 1))# 重复的layer,分别有3,4,6,3个residual blockself.layer1 = self._make_layer(64, 64, blocks[0])self.layer2 = self._make_layer(64, 128, blocks[1], stride=2)self.layer3 = self._make_layer(128, 256, blocks[2], stride=2)self.layer4 = self._make_layer(256, 512, blocks[3], stride=2)# 分类用的全连接self.fc = nn.Linear(512, num_classes)def _make_layer(self, inchannel, outchannel, block_num, stride=1):"""构建layer,包含多个residual block"""shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, 1, stride, bias=False),nn.BatchNorm2d(outchannel),nn.ReLU())layers = []layers.append(ResidualBlock(inchannel, outchannel, stride, shortcut))for i in range(1, block_num):layers.append(ResidualBlock(outchannel, outchannel))return nn.Sequential(*layers)def forward(self, x):x = self.pre(x)l1_out = self.layer1(x)l2_out = self.layer2(l1_out)l3_out = self.layer3(l2_out)l4_out = self.layer4(l3_out)p_out = F.avg_pool2d(l4_out, 7)fea = p_out.view(p_out.size(0), -1)out=self.fc(fea)return l1_out,l2_out,l3_out,l4_out,fea,outdef ResNet18():return ResNet([2, 2, 2, 2])def ResNet34():return ResNet([3, 4, 6, 3])if __name__ == '__main__':device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = ResNet34()model.to(device)# summary(model, (3, 224, 224))

主要修改了输出结果,将每个block的结果输出出来。

CoatNet

代码:
coatnet.py

import torch
import torch.nn as nnfrom einops import rearrange
from einops.layers.torch import Rearrangedef conv_3x3_bn(inp, oup, image_size, downsample=False):stride = 1 if downsample == False else 2return nn.Sequential(nn.Conv2d(inp, oup, 3, stride, 1, bias=False),nn.BatchNorm2d(oup),nn.GELU())class PreNorm(nn.Module):def __init__(self, dim, fn, norm):super().__init__()self.norm = norm(dim)self.fn = fndef forward(self, x, **kwargs):return self.fn(self.norm(x), **kwargs)class SE(nn.Module):def __init__(self, inp, oup, expansion=0.25):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(oup, int(inp * expansion), bias=False),nn.GELU(),nn.Linear(int(inp * expansion), oup, bias=False),nn.Sigmoid())def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * yclass FeedForward(nn.Module):def __init__(self, dim, hidden_dim, dropout=0.):super().__init__()self.net = nn.Sequential(nn.Linear(dim, hidden_dim),nn.GELU(),nn.Dropout(dropout),nn.Linear(hidden_dim, dim),nn.Dropout(dropout))def forward(self, x):return self.net(x)class MBConv(nn.Module):def __init__(self, inp, oup, image_size, downsample=False, expansion=4):super().__init__()self.downsample = downsamplestride = 1 if self.downsample == False else 2hidden_dim = int(inp * expansion)if self.downsample:self.pool = nn.MaxPool2d(3, 2, 1)self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False)if expansion == 1:self.conv = nn.Sequential(# dwnn.Conv2d(hidden_dim, hidden_dim, 3, stride,1, groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),# pw-linearnn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)else:self.conv = nn.Sequential(# pw# down-sample in the first convnn.Conv2d(inp, hidden_dim, 1, stride, 0, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),# dwnn.Conv2d(hidden_dim, hidden_dim, 3, 1, 1,groups=hidden_dim, bias=False),nn.BatchNorm2d(hidden_dim),nn.GELU(),SE(inp, hidden_dim),# pw-linearnn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),nn.BatchNorm2d(oup),)self.conv = PreNorm(inp, self.conv, nn.BatchNorm2d)def forward(self, x):if self.downsample:return self.proj(self.pool(x)) + self.conv(x)else:return x + self.conv(x)class Attention(nn.Module):def __init__(self, inp, oup, image_size, heads=8, dim_head=32, dropout=0.):super().__init__()inner_dim = dim_head * headsproject_out = not (heads == 1 and dim_head == inp)self.ih, self.iw = image_sizeself.heads = headsself.scale = dim_head ** -0.5# parameter table of relative position biasself.relative_bias_table = nn.Parameter(torch.zeros((2 * self.ih - 1) * (2 * self.iw - 1), heads))coords = torch.meshgrid((torch.arange(self.ih), torch.arange(self.iw)))coords = torch.flatten(torch.stack(coords), 1)relative_coords = coords[:, :, None] - coords[:, None, :]relative_coords[0] += self.ih - 1relative_coords[1] += self.iw - 1relative_coords[0] *= 2 * self.iw - 1relative_coords = rearrange(relative_coords, 'c h w -> h w c')relative_index = relative_coords.sum(-1).flatten().unsqueeze(1)self.register_buffer("relative_index", relative_index)self.attend = nn.Softmax(dim=-1)self.to_qkv = nn.Linear(inp, inner_dim * 3, bias=False)self.to_out = nn.Sequential(nn.Linear(inner_dim, oup),nn.Dropout(dropout)) if project_out else nn.Identity()def forward(self, x):qkv = self.to_qkv(x).chunk(3, dim=-1)q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h=self.heads), qkv)dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale# Use "gather" for more efficiency on GPUsrelative_bias = self.relative_bias_table.gather(0, self.relative_index.repeat(1, self.heads))relative_bias = rearrange(relative_bias, '(h w) c -> 1 c h w', h=self.ih*self.iw, w=self.ih*self.iw)dots = dots + relative_biasattn = self.attend(dots)out = torch.matmul(attn, v)out = rearrange(out, 'b h n d -> b n (h d)')out = self.to_out(out)return outclass Transformer(nn.Module):def __init__(self, inp, oup, image_size, heads=8, dim_head=32, downsample=False, dropout=0.):super().__init__()hidden_dim = int(inp * 4)self.ih, self.iw = image_sizeself.downsample = downsampleif self.downsample:self.pool1 = nn.MaxPool2d(3, 2, 1)self.pool2 = nn.MaxPool2d(3, 2, 1)self.proj = nn.Conv2d(inp, oup, 1, 1, 0, bias=False)self.attn = Attention(inp, oup, image_size, heads, dim_head, dropout)self.ff = FeedForward(oup, hidden_dim, dropout)self.attn = nn.Sequential(Rearrange('b c ih iw -> b (ih iw) c'),PreNorm(inp, self.attn, nn.LayerNorm),Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw))self.ff = nn.Sequential(Rearrange('b c ih iw -> b (ih iw) c'),PreNorm(oup, self.ff, nn.LayerNorm),Rearrange('b (ih iw) c -> b c ih iw', ih=self.ih, iw=self.iw))def forward(self, x):if self.downsample:x = self.proj(self.pool1(x)) + self.attn(self.pool2(x))else:x = x + self.attn(x)x = x + self.ff(x)return xclass CoAtNet(nn.Module):def __init__(self, image_size, in_channels, num_blocks, channels, num_classes=1000, block_types=['C', 'C', 'T', 'T']):super().__init__()ih, iw = image_sizeblock = {'C': MBConv, 'T': Transformer}self.s0 = self._make_layer(conv_3x3_bn, in_channels, channels[0], num_blocks[0], (ih // 2, iw // 2))self.s1 = self._make_layer(block[block_types[0]], channels[0], channels[1], num_blocks[1], (ih // 4, iw // 4))self.s2 = self._make_layer(block[block_types[1]], channels[1], channels[2], num_blocks[2], (ih // 8, iw // 8))self.s3 = self._make_layer(block[block_types[2]], channels[2], channels[3], num_blocks[3], (ih // 16, iw // 16))self.s4 = self._make_layer(block[block_types[3]], channels[3], channels[4], num_blocks[4], (ih // 32, iw // 32))self.pool = nn.AvgPool2d(ih // 32, 1)self.fc = nn.Linear(channels[-1], num_classes, bias=False)def forward(self, x):x = self.s0(x)l1_out = self.s1(x)l2_out = self.s2(l1_out)l3_out = self.s3(l2_out)l4_out = self.s4(l3_out)fea = self.pool(l4_out).view(-1, l4_out.shape[1])out = self.fc(fea)return l1_out,l2_out,l3_out,l4_out,fea, outdef _make_layer(self, block, inp, oup, depth, image_size):layers = nn.ModuleList([])for i in range(depth):if i == 0:layers.append(block(inp, oup, image_size, downsample=True))else:layers.append(block(oup, oup, image_size))return nn.Sequential(*layers)def coatnet_0():num_blocks = [2, 2, 3, 5, 2]            # Lchannels = [64, 96, 192, 384, 768]      # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_1():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [64, 96, 192, 384, 768]      # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_2():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [128, 128, 256, 512, 1026]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_3():num_blocks = [2, 2, 6, 14, 2]           # Lchannels = [192, 192, 384, 768, 1536]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def coatnet_4():num_blocks = [2, 2, 12, 28, 2]          # Lchannels = [192, 192, 384, 768, 1536]   # Dreturn CoAtNet((224, 224), 3, num_blocks, channels, num_classes=1000)def count_parameters(model):return sum(p.numel() for p in model.parameters() if p.requires_grad)if __name__ == '__main__':img = torch.randn(1, 3, 224, 224)net = coatnet_0()out = net(img)print(out.shape, count_parameters(net))net = coatnet_1()out = net(img)print(out.shape, count_parameters(net))net = coatnet_2()out = net(img)print(out.shape, count_parameters(net))net = coatnet_3()out = net(img)print(out.shape, count_parameters(net))net = coatnet_4()out = net(img)print(out.shape, count_parameters(net))

同上,将每个block层都输出出来。

数据准备

数据使用我以前在图像分类任务中的数据集——植物幼苗数据集,先将数据集转为训练集和验证集。执行代码:

import glob
import os
import shutilimage_list=glob.glob('data1/*/*.png')
print(image_list)
file_dir='data'
if os.path.exists(file_dir):print('true')#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir)
else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split
trainval_files, val_files = train_test_split(image_list, test_size=0.3, random_state=42)
train_dir='train'
val_dir='val'
train_root=os.path.join(file_dir,train_dir)
val_root=os.path.join(file_dir,val_dir)
for file in trainval_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)for file in val_files:file_class=file.replace("\\","/").split('/')[-2]file_name=file.replace("\\","/").split('/')[-1]file_class=os.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class + '/' + file_name)

训练Teacher模型

Teacher选用CoatNet的coatnet_2模型。这个模型在训练100个epoch后,在验证集上,最高成绩是91%。

步骤

新建teacher_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.coatnet import coatnet_2import json
import os

导入所需的库

定义训练和验证函数

编写train方法和val方法,由于修改输出的结果,所以返回结果又多个,如果不想对每个返回结果命名,可以使用下划线代替。

def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)_,_,_,l4_out,fea,output = model(data)loss = criterion(output, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'CoatNet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

全局参数:

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

采用默认的数据读取方式。

设置模型和Loss

    # 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = coatnet_2()num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'CoatNet/model_final.pth')

设置loss为交叉熵。
设置模型为coatnet_2。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
完成上面的代码就可以开始训练Teacher网络了。

学生网络

学生网络选用ResNet18,是一个比较小一点的网络了,模型的大小有40M。训练100个epoch,在验证集上最终的ACC是89%.

步骤

新建student_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from torch.autograd import Variable
from model.resnet import ResNet18
import json
import os

导入所需的库

定义训练和验证函数

# 定义训练过程def train(model, device, train_loader, optimizer, epoch):model.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = Variable(data).to(device), Variable(target).to(device)_,_,_,l4_out,fea,out = model(data)loss = criterion(out, target)optimizer.zero_grad()loss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = Variable(data).to(device), Variable(target).to(device)l1_out,l2_out,l3_out,l4_out,fea,out = model(data)loss = criterion(out, target)_, pred = torch.max(out.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc

编写train方法和val函数,由于修改输出的结果,所以返回结果又多个,如果不想对每个返回结果命名,可以使用下划线代替。
在val函数中验证ACC,保存ACC最高的模型。

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

全局参数:

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。

注意这里设置和Teacher模型保持一致,这样得出的结论才更有说服力。

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。
注意:数据增强和Teacher模型里的增强保持一致。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

采用pytorch默认的数据读取方式。

设置模型和Loss

	 # 实例化模型并且移动到GPUcriterion = nn.CrossEntropyLoss()model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft, DEVICE, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft, DEVICE, test_loader)val_acc_list[epoch]=accwith open('result_student.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet/model_final.pth')

设置loss为交叉熵。
设置模型为ResNet18。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
完成上面的代码就可以开始训练Student网络了。

蒸馏学生网络

学生网络继续选用ResNet18,使用Teacher网络蒸馏学生网络,训练100个epoch,最终,验证集的ACC为90%。
NST知识蒸馏的脚本详见:
https://wanghao.blog.csdn.net/article/details/127802486?spm=1001.2014.3001.5502。
代码如下:
nst.py

from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F'''
NST with Polynomial Kernel, where d=2 and c=0
'''
class NST(nn.Module):'''Like What You Like: Knowledge Distill via Neuron Selectivity Transferhttps://arxiv.org/pdf/1707.01219.pdf'''def __init__(self):super(NST, self).__init__()def forward(self, fm_s, fm_t):s_H, t_H = fm_s.shape[2], fm_t.shape[2]if s_H > t_H:fm_s = F.adaptive_avg_pool2d(fm_s, (t_H, t_H))elif s_H < t_H:fm_t = F.adaptive_avg_pool2d(fm_t, (s_H, s_H))else:passfm_s = fm_s.view(fm_s.size(0), fm_s.size(1), -1)fm_s = F.normalize(fm_s, dim=2)fm_t = fm_t.view(fm_t.size(0), fm_t.size(1), -1)fm_t = F.normalize(fm_t, dim=2)loss = self.poly_kernel(fm_t, fm_t).mean() \+ self.poly_kernel(fm_s, fm_s).mean() \- 2 * self.poly_kernel(fm_s, fm_t).mean()return lossdef poly_kernel(self, fm1, fm2):fm1 = fm1.unsqueeze(1)fm2 = fm2.unsqueeze(2)out = (fm1 * fm2).sum(-1).pow(2)return out

步骤

新建kd_train.py,插入代码:

导入需要的库

import torch.optim as optim
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
from torchvision import datasets
from model.resnet import ResNet18
import json
import osfrom nst import NST

导入需要的库,这里要注意,导入的ResNet18是我自定义的模型,不要导入官方自带的ResNet18。

定义训练和验证函数

# 定义训练过程
def train(s_net,t_net, device, criterionCls,criterionKD,train_loader, optimizer, epoch):s_net.train()sum_loss = 0total_num = len(train_loader.dataset)print(total_num, len(train_loader))for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()l1_out_s,l2_out_s,l3_out_s,l4_out_s,fea_s, out_s = s_net(data)cls_loss = criterionCls(out_s, target)l1_out_t,l2_out_t,l3_out_t,l4_out_t,fea_t, out_t = t_net(data)  # 训练出教师的 teacher_outputkd_loss = criterionKD(l4_out_s, l4_out_t.detach()) * lambda_kdloss = cls_loss + kd_lossloss.backward()optimizer.step()print_loss = loss.data.item()sum_loss += print_lossif (batch_idx + 1) % 10 == 0:print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(epoch, (batch_idx + 1) * len(data), len(train_loader.dataset),100. * (batch_idx + 1) / len(train_loader), loss.item()))ave_loss = sum_loss / len(train_loader)print('epoch:{},loss:{}'.format(epoch, ave_loss))Best_ACC=0
# 验证过程
@torch.no_grad()
def val(model, device,criterionCls, test_loader):global Best_ACCmodel.eval()test_loss = 0correct = 0total_num = len(test_loader.dataset)print(total_num, len(test_loader))with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)l1_out_s, l2_out_s, l3_out_s, l4_out_s, fea_s, out_s = model(data)loss = criterionCls(out_s, target)_, pred = torch.max(out_s.data, 1)correct += torch.sum(pred == target)print_loss = loss.data.item()test_loss += print_losscorrect = correct.data.item()acc = correct / total_numavgloss = test_loss / len(test_loader)if acc > Best_ACC:torch.save(model, file_dir + '/' + 'best.pth')Best_ACC = accprint('\nVal set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(avgloss, correct, len(test_loader.dataset), 100 * acc))return acc

编写train方法和val函数,由于修改输出的结果,所以返回结果有多个,我们需要对l4_out_s这个结果做蒸馏。
将Student的l4_out_s和Teacher的l4_out_t输入到criterionKD这个loss函数中计算loss。
l4_out_t.detach()的意思是阻断Teacher模型的反向传播。
在val函数中验证ACC,保存ACC最高的模型。

定义全局参数

if __name__ == '__main__':# 创建保存模型的文件夹file_dir = 'resnet_kd'if os.path.exists(file_dir):print('true')os.makedirs(file_dir, exist_ok=True)else:os.makedirs(file_dir)# 设置全局参数modellr = 1e-4BATCH_SIZE = 16EPOCHS = 100DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')lambda_kd=1.0

modellr :学习率
BATCH_SIZE:BatchSize的大小。
EPOCHS :epoch的大小
DEVICE:选择cpu还是gpu训练,默认是gpu,如果找不到GPU则改为CPU训练。
lambda_kd:蒸馏loss的比重,默认是1.0

图像预处理与增强

 # 数据预处理7transform = transforms.Compose([transforms.RandomRotation(10),transforms.GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 3.0)),transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5),transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])transform_test = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.44127703, 0.4712498, 0.43714803], std=[0.18507297, 0.18050247, 0.16784933])])

对于训练集,增强有10°的随机旋转、高斯模糊、饱和度明亮等。
对于验证集,则不做数据集增强。
注意:数据增强和Teacher模型里的增强保持一致。

读取数据

使用pytorch默认读取数据的方式。

    # 读取数据dataset_train = datasets.ImageFolder('data/train', transform=transform)dataset_test = datasets.ImageFolder("data/val", transform=transform_test)with open('class.txt', 'w') as file:file.write(str(dataset_train.class_to_idx))with open('class.json', 'w', encoding='utf-8') as file:file.write(json.dumps(dataset_train.class_to_idx))# 导入数据train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True)test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False)

设置模型和Loss

    model_ft = ResNet18()print(model_ft)num_ftrs = model_ft.fc.in_featuresmodel_ft.fc = nn.Linear(num_ftrs, 12)model_ft.to(DEVICE)# 选择简单暴力的Adam优化器,学习率调低optimizer = optim.Adam(model_ft.parameters(), lr=modellr)cosine_schedule = optim.lr_scheduler.CosineAnnealingLR(optimizer=optimizer, T_max=20, eta_min=1e-9)teacher_model=torch.load('./CoatNet/best.pth')teacher_model.eval()# 实例化模型并且移动到GPUcriterionKD = NST()criterionCls = nn.CrossEntropyLoss()# 训练val_acc_list= {}for epoch in range(1, EPOCHS + 1):train(model_ft,teacher_model, DEVICE,criterionCls,criterionKD, train_loader, optimizer, epoch)cosine_schedule.step()acc=val(model_ft,DEVICE,criterionCls , test_loader)val_acc_list[epoch]=accwith open('result_kd.json', 'w', encoding='utf-8') as file:file.write(json.dumps(val_acc_list))torch.save(model_ft, 'resnet_kd/model_final.pth')

设置模型为ResNet18。
修改最后的输出层,将其改为数据集的类别。
设置优化器为Adam。
设置学习率的调节方式为余弦退火算法。
加载Teacher模型,并设置为eval模式。
设置蒸馏loss为criterionKD
设置分类loss为交叉熵。
完成上面的代码就可以开始蒸馏模式!!!

结果比对

加载保存的结果,然后绘制acc曲线。

import numpy as np
from matplotlib import pyplot as plt
import json
teacher_file='result.json'
student_file='result_student.json'
student_kd_file='result_kd.json'
def read_json(file):with open(file, 'r', encoding='utf8') as fp:json_data = json.load(fp)print(json_data)return json_datateacher_data=read_json(teacher_file)
student_data=read_json(student_file)
student_kd_data=read_json(student_kd_file)x =[int(x) for x in  list(dict(teacher_data).keys())]
print(x)plt.plot(x, list(teacher_data.values()), label='teacher')
plt.plot(x,list(student_data.values()), label='student without NST')
plt.plot(x, list(student_kd_data.values()), label='student with NST')plt.title('Test accuracy')
plt.legend()plt.show()

最终得到的结果如下图:
在这里插入图片描述

总结

本文重点讲解了如何使用NST知识蒸馏算法对Student模型进行蒸馏。经过蒸馏算法NST训练后,Student模型提高了1%。希望能帮助到大家,如果觉得有用欢迎收藏、点赞和转发;如果有问题也可以留言讨论。
本次实战用到的代码和数据集详见:
https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/87121089?spm=1001.2014.3001.5503

这篇关于知识蒸馏NST算法实战:使用CoatNet蒸馏ResNet18的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/713579

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传