Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!

2024-02-15 17:10

本文主要是介绍Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标

在本章中,

  • 我们将学习如何通过一种称为“修复”的方法消除旧照片中的小噪音,笔画等。
  • 我们将看到OpenCV中的修复功能。

基础

你们大多数人家里都会有一些旧的旧化照片,上面有黑点,一些笔触等。你是否曾经想过将其还原?我们不能简单地在绘画工具中擦除它们,因为它将简单地用白色结构代替黑色结构,这是没有用的。在这些情况下,将使用一种称为图像修复的技术。基本思想很简单:用附近的像素替换那些不良区域,使其看起来和邻近的协调。考虑下面显示的图像(摘自Wikipedia):

基于此目的设计了几种算法,OpenCV提供了其中两种。

两者都可以通过相同的函数进行访问, cv.inpaint ()

第一种算法基于Alexandru Telea在2004年发表的论文“基于快速行进方法的图像修补技术”。它基于快速行进方法。考虑图像中要修复的区域。算法从该区域的边界开始,并进入该区域内部,首先逐渐填充边界中的所有内容。在要修复的邻域上的像素周围需要一个小的邻域。该像素被附近所有已知像素的归一化加权总和所代替。权重的选择很重要。那些位于该点附近,边界法线附近的像素和那些位于边界轮廓线上的像素将获得更大的权重。修复像素后,将使用快速行进方法将其移动到下一个最近的像素。FMM确保首先修复已知像素附近的那些像素,以便像手动启发式操作一样工作。通过使用标志 cv.INPAINT_TELEA 启用此算法。

第二种算法基于Bertalmio,Marcelo,Andrea L. Bertozzi和Guillermo Sapiro在2001年发表的论文“ Navier-Stokes,流体动力学以及图像和视频修补”。该算法基于流体动力学并利用了 偏微分方程。基本原理是启发式的。它首先沿着边缘从已知区域移动到未知区域(因为边缘是连续的)。它延续了等距线(线连接具有相同强度的点,就像轮廓线连接具有相同高程的点一样),同时在修复区域的边界匹配梯度矢量。为此,使用了一些流体动力学方法。获得它们后,将填充颜色以减少该区域的最小差异。通过使用标志 cv.INPAINT_NS 启用此算法。

代码

我们需要创建一个与输入图像大小相同的掩码,其中非零像素对应于要修复的区域。其他一切都很简单。我的图像因一些黑色笔画而旧化(我手动添加了)。我使用“绘画”工具创建了相应的笔触。

import numpy as np
import cv2 as cv
img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

请参阅下面的结果。第一张图片显示了降级的输入。第二个图像是掩码。第三个图像是第一个算法的结果,最后一个图像是第二个算法的结果。

### 附加资源

  1. Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro. "Navier-stokes, fluid dynamics, and image and video inpainting." In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.
  2. Telea, Alexandru. "An image inpainting technique based on the fast marching method." Journal of graphics tools 9.1 (2004): 23-34.

练习

  1. OpenCV一个有关修复的交互式示例,samples/python/inpaint.py,请尝试一下。
  2. 几个月前,我观看了有关Content-Aware Fill的视频,Content-Aware Fill是Adobe Photoshop中使用的一种先进的修复技术。在进一步的搜索中,我发现GIMP中已经存在相同的技术,但名称不同,为“ Resynthesizer”(你需要安装单独的插件)。我相信你会喜欢这项技术的。

源码教程获取加群:850591259

 

这篇关于Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711995

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

opencv 滚动条

参数介绍:createTrackbar( trackbarname , "hello" , &alpha_slider ,alpha_max ,  on_trackbar )  ;在标签中显示的文字(提示滑动条的用途) TrackbarName创建的滑动条要放置窗体的名字 “hello”滑动条的取值范围从 0 到 alpha_max (最小值只能为 zero).滑动后的值存放在

android-opencv-jni

//------------------start opencv--------------------@Override public void onResume(){ super.onResume(); //通过OpenCV引擎服务加载并初始化OpenCV类库,所谓OpenCV引擎服务即是 //OpenCV_2.4.3.2_Manager_2.4_*.apk程序包,存

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',