Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!

2024-02-15 17:10

本文主要是介绍Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标

在本章中,

  • 我们将学习如何通过一种称为“修复”的方法消除旧照片中的小噪音,笔画等。
  • 我们将看到OpenCV中的修复功能。

基础

你们大多数人家里都会有一些旧的旧化照片,上面有黑点,一些笔触等。你是否曾经想过将其还原?我们不能简单地在绘画工具中擦除它们,因为它将简单地用白色结构代替黑色结构,这是没有用的。在这些情况下,将使用一种称为图像修复的技术。基本思想很简单:用附近的像素替换那些不良区域,使其看起来和邻近的协调。考虑下面显示的图像(摘自Wikipedia):

基于此目的设计了几种算法,OpenCV提供了其中两种。

两者都可以通过相同的函数进行访问, cv.inpaint ()

第一种算法基于Alexandru Telea在2004年发表的论文“基于快速行进方法的图像修补技术”。它基于快速行进方法。考虑图像中要修复的区域。算法从该区域的边界开始,并进入该区域内部,首先逐渐填充边界中的所有内容。在要修复的邻域上的像素周围需要一个小的邻域。该像素被附近所有已知像素的归一化加权总和所代替。权重的选择很重要。那些位于该点附近,边界法线附近的像素和那些位于边界轮廓线上的像素将获得更大的权重。修复像素后,将使用快速行进方法将其移动到下一个最近的像素。FMM确保首先修复已知像素附近的那些像素,以便像手动启发式操作一样工作。通过使用标志 cv.INPAINT_TELEA 启用此算法。

第二种算法基于Bertalmio,Marcelo,Andrea L. Bertozzi和Guillermo Sapiro在2001年发表的论文“ Navier-Stokes,流体动力学以及图像和视频修补”。该算法基于流体动力学并利用了 偏微分方程。基本原理是启发式的。它首先沿着边缘从已知区域移动到未知区域(因为边缘是连续的)。它延续了等距线(线连接具有相同强度的点,就像轮廓线连接具有相同高程的点一样),同时在修复区域的边界匹配梯度矢量。为此,使用了一些流体动力学方法。获得它们后,将填充颜色以减少该区域的最小差异。通过使用标志 cv.INPAINT_NS 启用此算法。

代码

我们需要创建一个与输入图像大小相同的掩码,其中非零像素对应于要修复的区域。其他一切都很简单。我的图像因一些黑色笔画而旧化(我手动添加了)。我使用“绘画”工具创建了相应的笔触。

import numpy as np
import cv2 as cv
img = cv.imread('messi_2.jpg')
mask = cv.imread('mask2.png',0)
dst = cv.inpaint(img,mask,3,cv.INPAINT_TELEA)
cv.imshow('dst',dst)
cv.waitKey(0)
cv.destroyAllWindows()

请参阅下面的结果。第一张图片显示了降级的输入。第二个图像是掩码。第三个图像是第一个算法的结果,最后一个图像是第二个算法的结果。

### 附加资源

  1. Bertalmio, Marcelo, Andrea L. Bertozzi, and Guillermo Sapiro. "Navier-stokes, fluid dynamics, and image and video inpainting." In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I-355. IEEE, 2001.
  2. Telea, Alexandru. "An image inpainting technique based on the fast marching method." Journal of graphics tools 9.1 (2004): 23-34.

练习

  1. OpenCV一个有关修复的交互式示例,samples/python/inpaint.py,请尝试一下。
  2. 几个月前,我观看了有关Content-Aware Fill的视频,Content-Aware Fill是Adobe Photoshop中使用的一种先进的修复技术。在进一步的搜索中,我发现GIMP中已经存在相同的技术,但名称不同,为“ Resynthesizer”(你需要安装单独的插件)。我相信你会喜欢这项技术的。

源码教程获取加群:850591259

 

这篇关于Python居然还能去马赛克并且修补图片~你敢信?OpenCV的魅力!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711995

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模