【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字

2024-02-15 15:36

本文主要是介绍【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总

LeetCode:1012. 至少有 1 位重复的数字

给定正整数 n,返回在 [1, n] 范围内具有 至少 1 位 重复数字的正整数的个数。
示例 1:
输入:n = 20
输出:1
解释:具有至少 1 位重复数字的正数(<= 20)只有 11 。
示例 2:
输入:n = 100
输出:10
解释:具有至少 1 位重复数字的正数(<= 100)有 11,22,33,44,55,66,77,88,99 和 100 。
示例 3:
输入:n = 1000
输出:262
提示:
1 <= n <= 109

动态规划

动态规划的状态表示

自定义状态mask的含义:如果(1<<i)&mask 表示i已经使用,i取值范围[0,9]。每个状态有两个值:first,不含重复数字的数量;second,含重复数字的数量。

动态规划的转移方程

前一位的自定义状态mask,当前数字index。newMask = mask | ( 1 << index) m代码mask,m1代表newMask。如果之前的已经包括当前数字,则全部数字都是重复数字;否则,之前是重复数字,现在仍然是重复数字,之前不是重复数字,现在也不是。
{ d p [ m 1 ] . s e c o n d + = p r e [ m ] . f i r s t + p r e [ m ] . s e c o n d m = = m 1 d p [ m 1 ] . f i r s t + = p r e [ m ] . f i r s t d p [ m 1 ] . s e c o n d + = p r e [ m ] . s e c o n d e l s e \begin{cases} dp[m1].second += pre[m].first + pre[m].second & m==m1\\ dp[m1].first+= pre[m].first \quad dp[m1].second += pre[m].second & else \\ \end{cases} {dp[m1].second+=pre[m].first+pre[m].seconddp[m1].first+=pre[m].firstdp[m1].second+=pre[m].secondm==m1else

动态规划的初始值

对每个合法数字index。 pre[i<<index].first =1 。

动态规划的填表顺序

按封装类是按从高位到低位处理的。

动态规划的返回值

所有状态 second之和。

代码

核心代码

template<class ELE, class ResultType, ELE minEle, ELE maxEle>
class CLowUperr
{
public:CLowUperr(int iResutlCount) :m_iResutlCount(iResutlCount){}void Init(const ELE* pLower, const ELE* pHigh, int iNum){m_vPre.assign(4, vector<ResultType>(m_iResutlCount));if (iNum <= 0){return;}InitPre(pLower, pHigh);iNum--;while (iNum--){pLower++;pHigh++;vector<vector<ResultType>> dp(4, vector<ResultType>(m_iResutlCount));OnInitDP(dp);//处理非边界for (auto tmp = minEle; tmp <= maxEle; tmp++){OnEnumOtherBit(dp[0], m_vPre[0], tmp);}//处理下边界OnEnumOtherBit(dp[1], m_vPre[1], *pLower);for (auto tmp = *pLower + 1; tmp <= maxEle; tmp++){OnEnumOtherBit(dp[0], m_vPre[1], tmp);}//处理上边界OnEnumOtherBit(dp[2], m_vPre[2], *pHigh);for (auto tmp = minEle; tmp < *pHigh; tmp++){OnEnumOtherBit(dp[0], m_vPre[2], tmp);}//处理上下边界if (*pLower == *pHigh){OnEnumOtherBit(dp[3], m_vPre[3], *pLower);}else{OnEnumOtherBit(dp[1], m_vPre[3], *pLower);for (auto tmp = *pLower + 1; tmp < *pHigh; tmp++){OnEnumOtherBit(dp[0], m_vPre[3], tmp);}OnEnumOtherBit(dp[2], m_vPre[3], *pHigh);}m_vPre.swap(dp);}}/*ResultType Total(int iMinIndex, int iMaxIndex){ResultType ret;for (int status = 0; status < 4; status++){for (int index = iMinIndex; index <= iMaxIndex; index++){ret += m_vPre[status][index];}}return ret;}*/
protected:const int m_iResutlCount;void InitPre(const ELE* const pLower, const ELE* const pHigh){for (ELE cur = *pLower; cur <= *pHigh; cur++){int iStatus = 0;if (*pLower == cur){iStatus = *pLower == *pHigh ? 3 : 1;}else if (*pHigh == cur){iStatus = 2;}OnEnumFirstBit(m_vPre[iStatus], cur);}}virtual void OnEnumOtherBit(vector<ResultType>& dp, const vector<ResultType>& vPre, ELE curValue) = 0;virtual void OnEnumFirstBit(vector<ResultType>& vPre, const ELE curValue) = 0;virtual void OnInitDP(vector<vector<ResultType>>& dp){}vector<vector<ResultType>> m_vPre;
};class CCharLowerUper : public CLowUperr<char, pair<int, int>, '0', '9'>
{
public:CCharLowerUper():CLowUperr(1<<10){}int Total(){return Total(0, m_iResutlCount-1);}int Total(int iMinIndex, int iMaxIndex){int ret = 0;for (int index = iMinIndex; index <= iMaxIndex; index++){int cur = 0;for (int status = 0; status < 4; status++){cur += m_vPre[status][index].second;}ret += cur;}return ret;}
protected:virtual void OnEnumFirstBit(vector<pair<int, int>>& vPre, const char curValue){const int index = curValue - '0';vPre[1 << index].first = 1;	}virtual void OnEnumOtherBit(vector<pair<int, int>>& dp, const vector<pair<int, int>>& vPre, char curValue){const int index = curValue - '0';for (int i = 0; i < m_iResutlCount; i++){const int iNewMask = (1 << index) | i;if (iNewMask == i ){dp[iNewMask].second += vPre[i].first + vPre[i].second;}else{dp[iNewMask].first += vPre[i].first;dp[iNewMask].second +=  vPre[i].second;}}}
};class Solution {
public:int numDupDigitsAtMostN(int n) {const string strN = std::to_string(n);const int len = strN.length();int iRet = 0;for (int i = 1; i < len; i++){CCharLowerUper lu;lu.Init(("1" + string(i - 1, '0')).c_str(), string(i, '9').c_str(), i);iRet += lu.Total();}CCharLowerUper lu;lu.Init(("1" + string(len - 1, '0')).c_str(), strN.c_str(), len);iRet += lu.Total();return iRet;}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{	int n;{Solution sln;n = 20;auto res = sln.numDupDigitsAtMostN(n);Assert(res, 1);}{Solution sln;n = 100;auto res = sln.numDupDigitsAtMostN(n);Assert(res, 10);}{Solution sln;n = 1000;auto res = sln.numDupDigitsAtMostN(n);Assert(res, 262);}
}

2023年1月版

int GetNotRepeateNum(int len, int iHasSel)
{
if (0 == len)
{
return 1;
}
if ((0 == iHasSel) && (1 == len))
{
return 10;
}
int iRet = 1;
if (iHasSel > 0)
{
for (int tmp = 10 - iHasSel; (tmp >= 2)&& len ; tmp–,len–)
{
iRet *= tmp;
}
}
else
{
iRet *= 9;
len–;
for (int tmp=9; (tmp>=2)&&len; len–,tmp–)
{
iRet *= tmp;
}
}
return iRet;
}
class Solution {
public:
int numDupDigitsAtMostN(int n) {
string s = std::to_string(n);
int iBitLen =s.length();
int iNotRepeatNum = 0;
for (int i = 1; i < iBitLen; i++)
{
iNotRepeatNum += GetNotRepeateNum(iBitLen-i, 0);
}
std::set setHasSel;
//位数相同,但最高为比n小
for (int i = 0; i < iBitLen; i++)
{
int iNum = s[i] - ‘0’;
if (1 + i == iBitLen)
{
iNum++;//最后一位可以相等
}
int iLessNum = iNum - std::distance(setHasSel.begin(), setHasSel.lower_bound(iNum));
if (0 == i && 1 != iBitLen)
{
iLessNum–;
}
if (iLessNum > 0 )
{
iNotRepeatNum += iLessNum * GetNotRepeateNum(iBitLen - i - 1, i + 1);
}
if (setHasSel.count(iNum))
{
break;
}
setHasSel.insert(iNum);
}
//扣掉0
return n - iNotRepeatNum + 1;
}
};

2023年8月版

class Solution {
public:
int numDupDigitsAtMostN(int n) {
auto str = std::to_string(n);
for (int i = 1; i < str.length(); i++)
{
Do(string(i, ‘9’));
}
Do(str);
return m_iRet;
}
void Do(const string& strUp)
{
int pre[2][1024] = { 0 };
{
const int iMax0 = strUp[0] - ‘0’;
for (int i = 1; i <= iMax0; i++)
{
pre[i == iMax0][1 << i ]++;
}
}
{
for (int i = 1; i < strUp.length(); i++)
{
int dp[2][1024] = { 0 };
//处理不在边界
for (int j = 0; j < 10; j++)
{
for (int pr = 0; pr < 1024; pr++)
{
int iMask = (pr & (1 << j)) ? 0 : (pr | (1 << j));
if (pr == 0)
{
iMask = 0;
}
dp[0][iMask] += pre[0][pr];
}
}
const int iMaxI = strUp[i] - ‘0’;
//处理在边界
for (int j = 0; j <= iMaxI; j++)
{
bool bUp = j == iMaxI;
for (int pr = 0; pr < 1024; pr++)
{
int iMask = (pr & (1 << j)) ? 0 : (pr | (1 << j));
if (pr == 0)
{
iMask = 0;
}
dp[bUp][iMask] += pre[1][pr];
}
}
memcpy(pre, dp, sizeof(dp));
}
}
m_iRet += pre[0][0] + pre[1][0];
}
int m_iRet = 0;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【数位dp】【动态规划】【状态压缩】【推荐】1012. 至少有 1 位重复的数字的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/711793

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

VUE动态绑定class类的三种常用方式及适用场景详解

《VUE动态绑定class类的三种常用方式及适用场景详解》文章介绍了在实际开发中动态绑定class的三种常见情况及其解决方案,包括根据不同的返回值渲染不同的class样式、给模块添加基础样式以及根据设... 目录前言1.动态选择class样式(对象添加:情景一)2.动态添加一个class样式(字符串添加:情

SpringCloud配置动态更新原理解析

《SpringCloud配置动态更新原理解析》在微服务架构的浩瀚星海中,服务配置的动态更新如同魔法一般,能够让应用在不重启的情况下,实时响应配置的变更,SpringCloud作为微服务架构中的佼佼者,... 目录一、SpringBoot、Cloud配置的读取二、SpringCloud配置动态刷新三、更新@R

MySQL中删除重复数据SQL的三种写法

《MySQL中删除重复数据SQL的三种写法》:本文主要介绍MySQL中删除重复数据SQL的三种写法,文中通过代码示例讲解的非常详细,对大家的学习或工作有一定的帮助,需要的朋友可以参考下... 目录方法一:使用 left join + 子查询删除重复数据(推荐)方法二:创建临时表(需分多步执行,逻辑清晰,但会

Spring Boot 中整合 MyBatis-Plus详细步骤(最新推荐)

《SpringBoot中整合MyBatis-Plus详细步骤(最新推荐)》本文详细介绍了如何在SpringBoot项目中整合MyBatis-Plus,包括整合步骤、基本CRUD操作、分页查询、批... 目录一、整合步骤1. 创建 Spring Boot 项目2. 配置项目依赖3. 配置数据源4. 创建实体类

如何用Python绘制简易动态圣诞树

《如何用Python绘制简易动态圣诞树》这篇文章主要给大家介绍了关于如何用Python绘制简易动态圣诞树,文中讲解了如何通过编写代码来实现特定的效果,包括代码的编写技巧和效果的展示,需要的朋友可以参考... 目录代码:效果:总结 代码:import randomimport timefrom math

Java子线程无法获取Attributes的解决方法(最新推荐)

《Java子线程无法获取Attributes的解决方法(最新推荐)》在Java多线程编程中,子线程无法直接获取主线程设置的Attributes是一个常见问题,本文探讨了这一问题的原因,并提供了两种解决... 目录一、问题原因二、解决方案1. 直接传递数据2. 使用ThreadLocal(适用于线程独立数据)

Java中JSON字符串反序列化(动态泛型)

《Java中JSON字符串反序列化(动态泛型)》文章讨论了在定时任务中使用反射调用目标对象时处理动态参数的问题,通过将方法参数存储为JSON字符串并进行反序列化,可以实现动态调用,然而,这种方式容易导... 需求:定时任务扫描,反射调用目标对象,但是,方法的传参不是固定的。方案一:将方法参数存成jsON字

Qt实现文件的压缩和解压缩操作

《Qt实现文件的压缩和解压缩操作》这篇文章主要为大家详细介绍了如何使用Qt库中的QZipReader和QZipWriter实现文件的压缩和解压缩功能,文中的示例代码简洁易懂,需要的可以参考一下... 目录一、实现方式二、具体步骤1、在.pro文件中添加模块gui-private2、通过QObject方式创建