数学建模--迪克斯特拉( Dijkstra)算法

2024-02-15 15:20

本文主要是介绍数学建模--迪克斯特拉( Dijkstra)算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

先贴上迪克斯特拉算法的原理,该算法又称为PT标号法,对于算法的定义和步骤比较难以理解,只需要粗略看一下就好。Dijkstra’s Algorithm 基本思想:
若给定带权有向图G=(V,E)和源顶点v0,构筑一个源集合S,将v0加入其中。
① 对差集V\S中 个顶点vi,逐一计算从v0 至它的距离 D(v0 , vi ),若该两顶点之间没有边,则其距离为无穷大。求出其中距离最短 的顶点w,将其加入到集合 S 中。
② 重新计算 v0 至差集 V\S 中各顶点的距离 D(v0, vi )= Min(D(v0, vi ), D(v0, w ) + C(w, vi )).其中C(w, vi )是顶点w 与 vi 之 间边上的费用。
③ 重复 步骤①②。直至所有的顶点都加到集合S 中为止。
算法结束时, 从 u0 到各顶点 v 的距离由 v 的最后一次的标号 l(v) 给出。 在 v 进入 Si
之前的标号 l(v) 叫 T 标号, v 进入 Si 时的标号 l(v) 叫 P 标号。算法就是不断修改各顶
点的 T 标号,直至获得 P 标号。若在算法运行过程中,将每一顶点获得 P 标号所由来
的边在图上标明,则算法结束时, u0 至各项点的最短路也在图上标示出来了。
关于Dijkstra的算法我推荐看一下中国民航学院的一个视频,我把它保存到百度云,有兴趣可以看看,链接: http://pan.baidu.com/s/1jIDUnEQ 密码: gbh2
下面直接粘贴上matlab代码,该代码不是我原创的,我只是在原代码上增加了注释。

function [d index1 index2] = Dijkf(a)
%a 表示图的权值矩阵
%d 表示所求最短路的权和
%index1 表示标号的顶点顺序
%index2 表示标号顶点索引M = max(max(a));
pb(1: length(a)) = 0;%初始化pb矩阵,清零
%该矩阵主要是用来标示矩阵d中P标号和T标号的分布情况,
%为0则该点属于T标号点,为1则该点属于P标号点%初始化起点
pb(1) = 1;
index1 = 1;
index2 = ones(1, length(a));
d(1: length(a)) = M;
d(1) = 0;
temp = 1;while sum(pb) < length(a)tb = find(pb == 0);%找出未进行P标号即进行T标号的在d中的索引d(tb) = min(d(tb), d(temp) + a(temp, tb));%T(v)=min(T(v),l(uv)+T(v)) tmpb = find(d(tb) == min(d(tb)));%tmpb等于T标号中的点的最小 值在d中的索引temp = tb(tmpb(1));%temp等于T标号的最小值第一个点在d中的索引pb(temp) = 1;%将T标号的点进行P标号index1 = [index1, temp];%将找到的temp加入到index1中,表示已经找到到底该点的最短路index = index1(find(d(index1) == d(temp) - a(temp, index1)));%找出到达该点最短路径中的前面的点if length(index) >= 2index = index(1);%取最前面的一个点添加到index2中endindex2(temp) = index;
end
d;
index1;
index2;

在这段代码中最难懂的是这行代码:

index = index1(find(d(index1) == d(temp) - a(temp, index1)));

首先是d(temp)表示最近被P标号的点距离起点的最短路径,d(index1) 已经P标号的所有点的最短路径,如果d(index1) == d(temp) - a(temp, index1))成立,这说明index1(1)是该最短路径中到达点temp的前面一个点,反之则不是该路径的点。
这里写图片描述
下面通过上图粗略解释一下该代码的原理,首先假设在前面计算中点1 2 3 4都是index1中的点,从1到4的最短路径是1-3-4,该路径长为d(4),假设取index1中的2点(不是最短路径的点),d(4)-a(2,4)~=d(3)(a(2,4)表示2-4的长),取index1中的3,d(4)-a(2,3) == d(3),所以3是该最短路径上的点。

这篇关于数学建模--迪克斯特拉( Dijkstra)算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_32412759/article/details/73401529
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/711770

相关文章

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第