OpenCV编程-OpenMP优化入门

2024-02-14 23:58

本文主要是介绍OpenCV编程-OpenMP优化入门,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

找了个去雾源码,做了简单的优化:


IplImage *quw1(IplImage *src,int block,double w)
{//图像分别有三个颜色通道IplImage *dst1=NULL;IplImage *dst2=NULL;IplImage *dst3=NULL;IplImage *imgroi1;//dst1的ROIIplImage *imgroi2;//dst2的ROIIplImage *imgroi3;//dst3的ROIIplImage *roidark;//dark channel的ROIIplImage *dark_channel=NULL;//暗原色先验的指针IplImage *toushelv=NULL;//透射率//去雾算法运算后的三个通道IplImage *j1=NULL;IplImage *j2=NULL;IplImage *j3=NULL;//去雾后的图像,三通道合并成IplImage *dst=NULL;//源图像ROI位置以及大小CvRect ROI_rect;//分离的三个通道dst1=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);dst2=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);dst3=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为各个ROI分配内存imgroi1=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);imgroi2=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);imgroi3=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);roidark=cvCreateImage(cvSize(block,block),IPL_DEPTH_8U,1);//为j1 j2 j3分配大小j1=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);j2=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);j3=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为暗原色先验指针分配大小dark_channel=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//为透射率指针分配大小toushelv=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,1);//dst分配大小dst=cvCreateImage(cvSize(src->width,src->height),IPL_DEPTH_8U,3);//将原彩色图像分离成三通道cvSplit(src,dst1,dst2,dst3,NULL);//求暗原色ROI_rect.width=block;ROI_rect.height=block;ROI_rect.x=0;ROI_rect.y=0;int i;int j;double min1=0;double max1=0;double min2=0;double max2=0;double min3=0;double max3=0;double min=0;CvScalar value;#pragma omp parallel forfor(i=0;i<src->width/block;i++){        for(j=0;j<src->height/block;j++){//分别计算三个通道内ROI的最小值cvSetImageROI(dst1,ROI_rect);cvCopy(dst1,imgroi1,NULL);cvMinMaxLoc(imgroi1,&min1,&max1,NULL,NULL);cvSetImageROI(dst2,ROI_rect);cvCopy(dst2,imgroi2,NULL);cvMinMaxLoc(imgroi2,&min2,&max2,NULL,NULL);cvSetImageROI(dst3,ROI_rect);cvCopy(dst3,imgroi3,NULL);cvMinMaxLoc(imgroi3,&min3,&max3,NULL,NULL);//求三个通道内最小值的最小值;if(min1<min2)min=min1;elsemin=min2;if(min>min3)min=min3;//min为这个ROI中暗原色value=cvScalar(min,min,min,min);//min放在value中;//min赋予dark_channel中相应的ROI;cvSetImageROI(dark_channel,ROI_rect);cvSet(roidark,value,NULL);cvCopy(roidark,dark_channel,NULL);//释放各个ROI;cvResetImageROI(dst1);cvResetImageROI(dst2);cvResetImageROI(dst3);cvResetImageROI(dark_channel);//转入下一个ROIROI_rect.x=block*i;ROI_rect.y=block*j;}}//保存暗原色先验的图像cvSaveImage("D:/dark_channel_prior.jpg",dark_channel);//利用得到的暗原色先验dark_channel_prior.jpg求大气光强double min_dark;double max_dark;CvPoint min_loc;CvPoint max_loc;//max_loc是暗原色先验最亮一小块的原坐标cvMinMaxLoc(dark_channel,&min_dark,&max_dark,&min_loc,&max_loc,NULL);//	cout<<max_loc.x<<" "<<max_loc.y<<endl;ROI_rect.x=max_loc.x;ROI_rect.y=max_loc.y;double A_dst1;//定义大气光成分的估计值double dst1_min;double A_dst2;double dst2_min;double A_dst3;double dst3_min;cvSetImageROI(dst1,ROI_rect);//按照论文方法求大气光强估计值cvCopy(dst1,imgroi1,NULL);cvMinMaxLoc(imgroi1,&dst1_min,&A_dst1,NULL,NULL);cvSetImageROI(dst2,ROI_rect);cvCopy(dst2,imgroi2,NULL);cvMinMaxLoc(imgroi2,&dst2_min,&A_dst2,NULL,NULL);cvSetImageROI(dst3,ROI_rect);cvCopy(dst3,imgroi3,NULL);cvMinMaxLoc(imgroi3,&dst3_min,&A_dst3,NULL,NULL);//	cout<<A_dst1<<" "<<A_dst2<<" "<<A_dst3<<endl;//这三值为大气光强度估计值//求透射率int k;int l;CvScalar m;CvScalar n;//暗原色先验各元素值
#pragma omp parallel forfor(k=0;k<src->height;k++){for(l=0;l<src->width;l++){m=cvGet2D(dark_channel,k,l);n=cvScalar(255-w*m.val[0]);//w目的是保留一部分的雾,使图像看起来真实些cvSet2D(toushelv,k,l,n);}}cvSaveImage("D:/toushelv.jpg",toushelv);//求无雾图像int p,q;double tx;double jj1,jj2,jj3;CvScalar ix,jx;
#pragma omp parallel forfor(p=0;p<src->height;p++){for(q=0;q<src->width;q++){tx=cvGetReal2D(toushelv,p,q);tx=tx/255;if(tx<0.1)tx=0.1;ix=cvGet2D(src,p,q);jj1=(ix.val[0]-A_dst1)/tx+A_dst1;//根据雾产生模型运算,还原出无雾图像jj2=(ix.val[1]-A_dst2)/tx+A_dst2;jj3=(ix.val[2]-A_dst3)/tx+A_dst3;jx=cvScalar(jj1,jj2,jj3,0.0);cvSet2D(dst,p,q,jx);}}cvSaveImage("3.jpg",dst);//释放指针cvReleaseImage(&dst1);cvReleaseImage(&dst2);cvReleaseImage(&dst3);cvReleaseImage(&imgroi1);cvReleaseImage(&imgroi2);cvReleaseImage(&imgroi3);cvReleaseImage(&roidark);cvReleaseImage(&dark_channel);cvReleaseImage(&toushelv);cvReleaseImage(&j1);cvReleaseImage(&j2);cvReleaseImage(&j3);return dst;
}
编译运行后:



得到结果如下:


其实上面的代码还可以再优化:

三通道可以分配三个线程分别计算,然后同步再做计算,应该效果会更好,本人的计算机就个双核,所以优势也体现不出来,就没做过多的优化了,就当入门。








这篇关于OpenCV编程-OpenMP优化入门的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709934

相关文章

SpringBoot首笔交易慢问题排查与优化方案

《SpringBoot首笔交易慢问题排查与优化方案》在我们的微服务项目中,遇到这样的问题:应用启动后,第一笔交易响应耗时高达4、5秒,而后续请求均能在毫秒级完成,这不仅触发监控告警,也极大影响了用户体... 目录问题背景排查步骤1. 日志分析2. 性能工具定位优化方案:提前预热各种资源1. Flowable

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java并发编程必备之Synchronized关键字深入解析

《Java并发编程必备之Synchronized关键字深入解析》本文我们深入探索了Java中的Synchronized关键字,包括其互斥性和可重入性的特性,文章详细介绍了Synchronized的三种... 目录一、前言二、Synchronized关键字2.1 Synchronized的特性1. 互斥2.

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

opencv图像处理之指纹验证的实现

《opencv图像处理之指纹验证的实现》本文主要介绍了opencv图像处理之指纹验证的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、简介二、具体案例实现1. 图像显示函数2. 指纹验证函数3. 主函数4、运行结果三、总结一、

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤