线性代数笔记2--矩阵消元

2024-02-14 22:04

本文主要是介绍线性代数笔记2--矩阵消元,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 简介

矩阵消元

1. 消元过程

实例方程组
{ x + 2 y + z = 2 3 x + 8 y + z = 12 4 y + z = 2 \begin{cases} x+2y+z=2\\ 3x+8y+z=12\\ 4y+z=2 \end{cases} x+2y+z=23x+8y+z=124y+z=2
矩阵化
A = [ 1 2 1 3 8 1 0 4 1 ] X = [ x y z ] A= \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \\ X= \begin{bmatrix} x\\y\\z \end{bmatrix} A= 130284111 X= xyz
B = [ 2 12 2 ] B= \begin{bmatrix} 2\\12\\2 \end{bmatrix} B= 2122
消元

[ 1 2 1 3 8 1 0 4 1 ] ⟶ ( 2 , 1 ) [ 1 2 1 0 2 − 2 0 4 1 ] ⟶ ( 3 , 2 ) [ 1 2 1 0 2 − 2 0 0 5 ] \begin{bmatrix} 1 & 2 & 1 \\ 3 & 8 & 1 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(2,1)}{\longrightarrow} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix} \stackrel{(3,2)}\longrightarrow \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} 130284111 (2,1) 100224121 (3,2) 100220125
回代
[ 2 12 2 ] ⟶ r o w 2 − 3 r o w 1 [ 2 6 2 ] ⟶ r o w 3 − 2 r o w 2 [ 2 6 − 10 ] \begin{bmatrix} 2 \\ 12 \\ 2 \end{bmatrix} \stackrel{row_2-3row_1}\longrightarrow \begin{bmatrix} 2 \\ 6 \\ 2 \end{bmatrix} \stackrel{row_3-2row_2}\longrightarrow \begin{bmatrix} 2 \\ 6 \\-10 \end{bmatrix} 2122 row23row1 262 row32row2 2610
求解
[ 1 2 1 0 2 − 2 0 0 5 ] [ x y z ] = [ 2 6 − 10 ] \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\z \end{bmatrix} =\begin{bmatrix} 2 \\ 6 \\ -10 \end{bmatrix} 100220125 xyz = 2610
结果
[ x y z ] = [ 2 1 − 2 ] \begin{bmatrix} x \\y \\z \end{bmatrix}= \begin{bmatrix} 2\\1 \\ -2 \end{bmatrix} xyz = 212

2. 消元矩阵

将上述消元的过程变为矩阵相乘的形式。

向量式思考
矩阵乘列向量
[ . . . . . . . . . ] [ x y z ] = [ x ∗ c o l 1 + y ∗ c o l 2 + z ∗ c o l 3 ] \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix} \begin{bmatrix}\ x \\ y\\ z \end{bmatrix}= \begin{bmatrix} x*col1 +y*col2 +z*col3 \end{bmatrix} .........  xyz =[xcol1+ycol2+zcol3]
行向量乘矩阵
[ x y z ] [ . . . . . . . . . ] = [ x ∗ r o w 1 + y ∗ r o w 2 + z ∗ r o w 3 ] \begin{bmatrix}\ x \ y\ z \end{bmatrix} \begin{bmatrix} . & . & .\\ . & . & .\\ . & . & . \end{bmatrix}= \begin{bmatrix} x*row1 \\+\\y*row2 \\+\\z*row3 \end{bmatrix} [ x y z] ......... = xrow1+yrow2+zrow3
一个矩阵左边乘一个单位矩阵并不改变其值
A = [ 1 2 1 3 8 1 0 4 1 ] = [ 1 0 0 0 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix} A= 130284111 = 100010001 130284111
而做行的加减则可以
A = [ 1 2 1 3 8 1 0 4 1 ] A ′ = [ 1 0 0 − 3 1 0 0 0 1 ] [ 1 2 1 3 8 1 0 4 1 ] = [ 1 2 1 0 2 − 2 0 4 1 ] A= \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 & 1 \end{bmatrix}\\ A'= \begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 3 & 8 & 1\\ 0 & 4 &1 \end{bmatrix}=\\ \begin{bmatrix} 1 & 2 &1 \\ 0 & 2 & -2\\ 0& 4 & 1 \end{bmatrix} A= 130284111 A= 130010001 130284111 = 100224121
实际上这个过程就是,我们在之前的消元过程中的第二行减去三倍第一行的过程。我们继续下去将这个矩阵对角化。
A ′ ′ = [ 1 0 0 0 1 0 0 − 2 1 ] A ′ = [ 1 0 0 0 1 0 0 − 2 1 ] [ 1 2 1 0 2 − 2 0 4 1 ] = [ 1 2 1 0 2 − 2 0 0 5 ] A''= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} A'\\= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2 \\ 0 & 4 & 1 \end{bmatrix}\\= \begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} A′′= 100012001 A= 100012001 100224121 = 100220125

我们令最后的上三角矩阵为
U = [ 1 2 1 0 2 − 2 0 0 5 ] U=\begin{bmatrix} 1 & 2 & 1\\ 0 & 2 & -2\\ 0 & 0 & 5 \end{bmatrix} U= 100220125
两个变换矩阵为
E 21 = [ 1 0 0 − 3 1 0 0 0 1 ] E 32 = [ 1 0 0 0 1 0 0 − 2 1 ] E_{21}=\begin{bmatrix} 1 & 0 &0\\ -3 & 1 & 0\\ 0 &0 & 1 \end{bmatrix} \\ E_{32}=\begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & -2 & 1 \end{bmatrix} E21= 130010001 E32= 100012001
E 32 ( E 21 A ) = U E_{32}(E_{21}A)=U E32(E21A)=U
而矩阵乘法满足结合律证明即
E 32 E 21 A = E 32 ( E 21 A ) E_{32}E_{21}A=E_{32}(E_{21}A) E32E21A=E32(E21A)
所以最终消元的过程变成了寻找矩阵E的过程
E = E 32 E 21 E=E_{32}E_{21} E=E32E21
这一过程。

3. 置换矩阵

在上述的消元矩阵中,我们并没有进行列的交换。那么如何进行交换呢?

我们知道在原矩阵基础左边乘单位矩阵,矩阵不会发生变化。
A = [ 1 2 3 4 ] = [ 1 0 0 1 ] [ 1 2 3 4 ] A= \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}=\ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} A=[1324]= [1001][1324]

如何交换两行呢,将单位矩阵变形
A ′ = [ 0 1 1 0 ] [ 1 2 3 4 ] = [ 3 4 1 2 ] A'= \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix}= \begin{bmatrix} 3 & 4\\ 1 & 2 \end{bmatrix} A=[0110][1324]=[3142]
推广到多行
A = [ 1 2 3 4 5 6 7 8 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9 \end{bmatrix} A= 147258369

  • 行变换
    交换第一行和第三行
    A ′ = [ 0 0 1 0 1 0 1 0 0 ] [ 1 2 3 4 5 6 7 8 9 ] A'= \begin{bmatrix} 0 & 0 & 1\\ 0 & 1 & 0\\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A= 001010100 147258369
    交换第一行和第二行
    A ′ ′ = [ 0 1 0 1 0 0 0 0 1 ] [ 1 2 3 4 5 6 7 8 9 ] A''= \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} A′′= 010100001 147258369

所以交换任意两行,只需将单位矩阵中对应行 1 1 1的位置进行交换。

  • 列变换

在矩阵左边乘是对原矩阵行变换,而在矩阵右边则是列变换
交换矩阵两列
A = [ 1 2 3 4 ] A ′ = [ 1 2 3 4 ] [ 0 1 1 0 ] = [ 2 1 4 3 ] A= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}= \begin{bmatrix} 2 & 1\\ 4 & 3 \end{bmatrix} A=[1324]A=[1324][0110]=[2413]

交换多列也是一样的效果
交换第 1 1 1 2 2 2
A = [ 1 2 3 4 5 6 7 8 9 ] A ′ = [ 1 2 3 4 5 6 7 8 9 ] [ 0 1 0 1 0 0 0 0 1 ] = [ 2 1 3 5 4 6 8 7 9 ] A= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \\ A'= \begin{bmatrix} 1 & 2 & 3\\ 4 & 5 & 6\\ 7 & 8 & 9\\ \end{bmatrix} \begin{bmatrix} 0 & 1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\\ \end{bmatrix}= \begin{bmatrix} 2 & 1 & 3\\ 5 & 4 & 6\\ 8 & 7 & 9\\ \end{bmatrix} A= 147258369 A= 147258369 010100001 = 258147369

所以交换任意两列,只需将单位矩阵中对应行 1 1 1的位置进行交换。
与行交换的不同地方在于,矩阵乘的在右边了。

4. 矩阵的逆

A = [ 1 0 0 − 3 1 0 0 0 1 ] A − 1 = [ 1 0 0 3 1 0 0 0 1 ] A − 1 A = [ 1 0 0 3 1 0 0 0 1 ] [ 1 0 0 − 3 1 0 0 0 1 ] = [ 1 0 0 0 1 0 0 0 1 ] A= \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}\\ A^{-1}= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix}\\ A^{-1}A= \begin{bmatrix} 1 & 0 & 0\\ 3 & 1 & 0\\ 0 & 0 & 1\\ \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ -3 & 1 &0\\ 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0\\ 0 & 0 & 1 \end{bmatrix} A= 130010001 A1= 130010001 A1A= 130010001 130010001 = 100010001

这篇关于线性代数笔记2--矩阵消元的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709676

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

hdu 6198 dfs枚举找规律+矩阵乘法

number number number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description We define a sequence  F : ⋅   F0=0,F1=1 ; ⋅   Fn=Fn

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓