Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

2024-02-14 21:48

本文主要是介绍Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3

http://blog.csdn.net/sunbow0

第二章Deep Belief Network (深度信念网络)

3实例

3.1 测试数据

按照上例数据,或者新建图片识别数据。

3.2 DBN实例

//****************2(读取固定样本:来源于经典优化算法测试函数Sphere Model***********//

    //2 读取样本数据

    Logger.getRootLogger.setLevel(Level.WARN)

    valdata_path ="/user/huangmeiling/deeplearn/data1"

    valexamples =sc.textFile(data_path).cache()

    valtrain_d1 =examples.map { line =>

      valf1 = line.split("\t")

      valf =f1.map(f =>f.toDouble)

      valid =f(0)

      valy = Array(f(1))

      valx =f.slice(2,f.length)

      (id, new BDM(1,y.length,y),new BDM(1,x.length,x))

    }

    valtrain_d =train_d1.map(f => (f._2, f._3))

    valopts = Array(100.0,20.0,0.0) 

    //3 设置训练参数,建立DBN模型

    valDBNmodel =new DBN().

      setSize(Array(5, 7)).

      setLayer(2).

      setMomentum(0.1).

      setAlpha(1.0).

      DBNtrain(train_d, opts) 

    //4 DBN模型转化为NN模型

    valmynn =DBNmodel.dbnunfoldtonn(1)

    valnnopts = Array(100.0,50.0,0.0)

    valnumExamples =train_d.count()

    println(s"numExamples = $numExamples.")

    println(mynn._2)

    for (i <-0 tomynn._1.length -1) {

      print(mynn._1(i) +"\t")

    }

    println()

    println("mynn_W1")

    valtmpw1 =mynn._3(0)

    for (i <-0 totmpw1.rows -1) {

      for (j <-0 totmpw1.cols -1) {

        print(tmpw1(i,j) +"\t")

      }

      println()

    }

    valNNmodel =new NeuralNet().

      setSize(mynn._1).

      setLayer(mynn._2).

      setActivation_function("sigm").

      setOutput_function("sigm").

      setInitW(mynn._3).

      NNtrain(train_d, nnopts) 

    //5 NN模型测试

    valNNforecast =NNmodel.predict(train_d)

    valNNerror =NNmodel.Loss(NNforecast)

    println(s"NNerror = $NNerror.")

    valprintf1 =NNforecast.map(f => (f.label.data(0), f.predict_label.data(0))).take(200)

    println("预测结果——实际值:预测值:误差")

    for (i <-0 untilprintf1.length)

      println(printf1(i)._1 +"\t" +printf1(i)._2 +"\t" + (printf1(i)._2 -printf1(i)._1)) 

转载请注明出处:

http://blog.csdn.net/sunbow0

这篇关于Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/709654

相关文章

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

vue解决子组件样式覆盖问题scoped deep

《vue解决子组件样式覆盖问题scopeddeep》文章主要介绍了在Vue项目中处理全局样式和局部样式的方法,包括使用scoped属性和深度选择器(/deep/)来覆盖子组件的样式,作者建议所有组件... 目录前言scoped分析deep分析使用总结所有组件必须加scoped父组件覆盖子组件使用deep前言

SSID究竟是什么? WiFi网络名称及工作方式解析

《SSID究竟是什么?WiFi网络名称及工作方式解析》SID可以看作是无线网络的名称,类似于有线网络中的网络名称或者路由器的名称,在无线网络中,设备通过SSID来识别和连接到特定的无线网络... 当提到 Wi-Fi 网络时,就避不开「SSID」这个术语。简单来说,SSID 就是 Wi-Fi 网络的名称。比如

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

SpringBoot操作spark处理hdfs文件的操作方法

《SpringBoot操作spark处理hdfs文件的操作方法》本文介绍了如何使用SpringBoot操作Spark处理HDFS文件,包括导入依赖、配置Spark信息、编写Controller和Ser... 目录SpringBoot操作spark处理hdfs文件1、导入依赖2、配置spark信息3、cont

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;