化秋毫为波澜:运动放大算法(深度学习版)

2024-02-13 21:30

本文主要是介绍化秋毫为波澜:运动放大算法(深度学习版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是运动放大(Motion Magnification)?

将视频中对应位置的运动进行放大,简单理解的话,就是找到时间段内的运动矢量,进行放大,然后权值叠加回去。

 

为什么需要运动放大?

因为很多自然界或者生物的 subtle behaviour 不易被肉眼察觉(如飞机翼的震动,受风影响摇晃的建筑,生物皮肤变化等等),这些微变化只有通过运动放大,才能更好地被机器或者人类来做后续的视频视觉任务。

 

运动放大的难点?

如何在运动放大的同时,尽量保持 apperance 不变?如何不引入大量噪声? 如何保证放大后的动作平滑?没有现存的数据集来训练?

其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。

  • 书的购买链接
  • 书的勘误,优化,源代码资源

传统方法的发展历程:

MIT在2012年首次提出了 Eulerian Video Magnification[1] ,第一次实时且相对鲁棒地应用到一些场景,如远程心率脉搏提取,记得多年前看到宣传的video是非常地震撼~~因为之前做运动放大,都不是用Eulerian方法,而是用Lagrangian视角去做(即运动估计,tracking啥的,非常耗时)

问题描述如下:

\hat{I}(x,t)=f(x+(1+\alpha)\delta(t))

原始信号 I(x,t)表示图像在位置 x 和时刻 tt的亮度值,而 \delta(t)表示运动偏差。目标就是通过调整运动放大系数 \alpha来生成放大后的信号 \tilde{I}(x,t)

文中通过实验发现,temporal filter可以模拟 spatial translation,故问题就简化为 提空间特征+设计时间维度上的滤波器。

算法的流程如下:

1.对视频每一帧都进行拉普拉斯金字塔处理,得到Multi-scale的边缘及形状描述

2. 对每个scale的特征voxel进行pixel-wise 时间上的带通滤波,增强感兴趣频率上的信号,过滤掉不感兴趣频率的噪声

3. 对filtered完的信号进行运动放大,叠加回滤波前的特征voxel;最后将金字塔重构融合。

Eulerian 运动放大框架[1]

 

该方法的cons:

1. 滤波器只能抑制某些频率的噪声,但乘以运动放大系数后,在带通频段的噪声也会放大

2. 若物体本身非静止,而在运动,该放大算法生成的图很模糊

故根据以上不足,后面又有两

这篇关于化秋毫为波澜:运动放大算法(深度学习版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/706649

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]