[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63)

本文主要是介绍[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目来源:严蔚敏《数据结构》C语言版本习题册 6.63

【题目】对以孩子链表表示的树编写计算树的深度的算法

【答案】

/*-------------------------|6.63 求树的深度         |-------------------------*/
int SubTreeDepth(CTree T, int index) { //序号为index的子树深度int max=-1; //孩子的最大深度int sd; //孩子的深度CNode *p;if (!T.nodes[index].firstchild) return 1; //没有孩子,深度为1for (p=T.nodes[index].firstchild; p; p=p->next) { //遍历该结点的所有孩子sd = SubTreeDepth(T, p->index); //求孩子的深度if (max<sd) max=sd;}return max+1; //孩子的最大深度+1
}
int TreeDepth(CTree T) { return SubTreeDepth(T, T.r);
}

【其他基本操作】

// 树的层序次序+每个结点的度 --> 创建CTree
Status CreateCTreeByLevelDegree(CTree *pT,char *levelstr, int *degree) {CNode *c,*sibling;int parent;int i,cnt;//创建结点for (i=0; i<strlen(levelstr); ++i) {//赋值pT->nodes[i].data = levelstr[i];pT->nodes[i].firstchild = NULL;}pT->n=strlen(levelstr); //个数pT->r=0; //根结点//为孩子找爸爸parent=0; //当前的爸爸i=1; //遍历孩子cnt=0; //已经为parent找到了cnt个孩子while (i<strlen(levelstr)) {if (degree[parent]==0 || cnt==degree[parent]) { //parent没有孩子 || parent的孩子已经全部找到cnt=0;parent++;continue;}cnt++; //为parent找到了一个孩子//创建孩子结点c = (CNode *)malloc(sizeof(CNode)); if (!c) exit(OVERFLOW);c->index = i; //孩子的编号c->next = NULL;if (cnt==1) { //第一个孩子pT->nodes[parent].firstchild = c;} else { //不是第一个孩子for(sibling=pT->nodes[parent].firstchild; sibling->next; sibling=sibling->next) ;sibling->next = c;}i++;}return TRUE;
}
// 先根遍历
void SubPreOrder(CTree T, int index) {CNode *child;visit(T.nodes[index].data);for (child=T.nodes[index].firstchild; child; child=child->next)SubPreOrder(T, child->index);
}
void PreOrder(CTree T) {SubPreOrder(T, T.r);
}

【完整代码】

#include<stdio.h>
#include<stdlib.h>
#include<string.h>#ifndef BASE
#define BASE
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;
typedef int bool;
#endif#define TElemType char
void visit(TElemType e) {printf("%c", e);
}
#define MAX_TREE_SIZE 100
#define maxSize 50typedef struct CNode{int index; //这个孩子的结点号(注意:在严书中变量名为child)struct CNode *next; //下一个孩子结点
}CNode, *ChildPtr; //孩子结点结构(在严书中名为CTNode)
typedef struct{TElemType data;CNode* firstchild;
}PNode; //双亲结点结构(在严书中,结构名为CTBox)
typedef struct{PNode nodes[MAX_TREE_SIZE];int n,r; //结点数 和 根结点的位置
}CTree; //树结构// 先根遍历
void SubPreOrder(CTree T, int index) {CNode *child;visit(T.nodes[index].data);for (child=T.nodes[index].firstchild; child; child=child->next)SubPreOrder(T, child->index);
}
void PreOrder(CTree T) {SubPreOrder(T, T.r);
}/*-------------------------|6.63 求树的深度         |-------------------------*/
int SubTreeDepth(CTree T, int index) { //序号为index的子树深度int max=-1; //孩子的最大深度int sd; //孩子的深度CNode *p;if (!T.nodes[index].firstchild) return 1; //没有孩子,深度为1for (p=T.nodes[index].firstchild; p; p=p->next) { //遍历该结点的所有孩子sd = SubTreeDepth(T, p->index); //求孩子的深度if (max<sd) max=sd;}return max+1; //孩子的最大深度+1
}
int TreeDepth(CTree T) { return SubTreeDepth(T, T.r);
}// 树的层序次序+每个结点的度 --> 创建CTree
Status CreateCTreeByLevelDegree(CTree *pT,char *levelstr, int *degree) {CNode *c,*sibling;int parent;int i,cnt;//创建结点for (i=0; i<strlen(levelstr); ++i) {//赋值pT->nodes[i].data = levelstr[i];pT->nodes[i].firstchild = NULL;}pT->n=strlen(levelstr); //个数pT->r=0; //根结点//为孩子找爸爸parent=0; //当前的爸爸i=1; //遍历孩子cnt=0; //已经为parent找到了cnt个孩子while (i<strlen(levelstr)) {if (degree[parent]==0 || cnt==degree[parent]) { //parent没有孩子 || parent的孩子已经全部找到cnt=0;parent++;continue;}cnt++; //为parent找到了一个孩子//创建孩子结点c = (CNode *)malloc(sizeof(CNode)); if (!c) exit(OVERFLOW);c->index = i; //孩子的编号c->next = NULL;if (cnt==1) { //第一个孩子pT->nodes[parent].firstchild = c;} else { //不是第一个孩子for(sibling=pT->nodes[parent].firstchild; sibling->next; sibling=sibling->next) ;sibling->next = c;}i++;}return TRUE;
}int main() {
/*6.63测试数据
RABCDEFGHI
3 2 0 1 0 0 3 0 0 0
*/CTree T;char levelstr[50];int num[50];int cnt;scanf("%s", levelstr);for (cnt=0; cnt<strlen(levelstr); cnt++) scanf("%d", &num[cnt]);CreateCTreeByLevelDegree(&T, levelstr, num);PreOrder(T);cnt = SubTreeDepth(T, T.r);printf("\nSubTreeDepth:%d\n", cnt);return 0;
}

这篇关于[树] 求树(孩子链表)的深度 与其他基本操作(严蔚敏《数据结构》6.63)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705513

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Go语言中三种容器类型的数据结构详解

《Go语言中三种容器类型的数据结构详解》在Go语言中,有三种主要的容器类型用于存储和操作集合数据:本文主要介绍三者的使用与区别,感兴趣的小伙伴可以跟随小编一起学习一下... 目录基本概念1. 数组(Array)2. 切片(Slice)3. 映射(Map)对比总结注意事项基本概念在 Go 语言中,有三种主要

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操