[树] 计算树(双亲表示法)的深度(严蔚敏《数据结构》6.64)

2024-02-13 12:18

本文主要是介绍[树] 计算树(双亲表示法)的深度(严蔚敏《数据结构》6.64),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目来源:严蔚敏《数据结构》C语言版本习题册 6.64

【题目】6.64
对以双亲表表示的树编写计算树的深度的算法

【答案】

/*----------------|6.64 求树的深度|----------------*/
int TreeDepth(PTree T) {int i,j;int dep;int maxdep = 0;for (i=0; i<T.n; i++) { //遍历每个结点dep=0;for (j=i; j>=0; j=T.nodes[j].parent) dep++; //从该结点,往上找父亲-->得到深度if (dep>maxdep) maxdep=dep;}return maxdep;
}

【完整代码】

#include<stdio.h>
#include<stdlib.h>#ifndef BASE
#define BASE
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
#define OVERFLOW -2
typedef int Status;
typedef int bool;
#endif#define TElemType char
void visit(TElemType e) {printf("%c ", e);
}
#define MAX_TREE_SIZE 100typedef struct PTNode{TElemType data;int parent; //双亲的位置域
}PTNode;
typedef struct{PTNode nodes[MAX_TREE_SIZE];int r,n;
}PTree;/*----------------|6.64 求树的深度|----------------*/
int TreeDepth(PTree T) {int i,j;int dep;int maxdep = 0;for (i=0; i<T.n; i++) { //遍历每个结点dep=0;for (j=i; j>=0; j=T.nodes[j].parent) dep++; //从该结点,往上找父亲-->得到深度if (dep>maxdep) maxdep=dep;}return maxdep;
}int main() {PTree PT;int cnt;PT.n=10;PT.r=0;PT.nodes[0].data='R';PT.nodes[0].parent=-1;PT.nodes[1].data='A';PT.nodes[1].parent=0;PT.nodes[2].data='B';PT.nodes[2].parent=0;PT.nodes[3].data='C';PT.nodes[3].parent=0;PT.nodes[4].data='D';PT.nodes[4].parent=1;PT.nodes[5].data='E';PT.nodes[5].parent=1;PT.nodes[6].data='F';PT.nodes[6].parent=3;PT.nodes[7].data='G';PT.nodes[7].parent=6;PT.nodes[8].data='H';PT.nodes[8].parent=6;PT.nodes[9].data='I';PT.nodes[9].parent=6;cnt = TreeDepth(PT);printf("树的深度:%d\n", cnt);return 0;
}

这篇关于[树] 计算树(双亲表示法)的深度(严蔚敏《数据结构》6.64)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705512

相关文章

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

redis数据结构之String详解

《redis数据结构之String详解》Redis以String为基础类型,因C字符串效率低、非二进制安全等问题,采用SDS动态字符串实现高效存储,通过RedisObject封装,支持多种编码方式(如... 目录一、为什么Redis选String作为基础类型?二、SDS底层数据结构三、RedisObject

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py