【opencv】LBP(局部二进制模式)算法的实现

2024-02-13 10:58

本文主要是介绍【opencv】LBP(局部二进制模式)算法的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本章我们学习LBP图像的原理和使用,因为接下来教程我们要使用LBP图像的直方图来进行脸部识别。

参考资料:

http://docs.opencv.org/modules/contrib/doc/facerec/facerec_tutorial.html      (非常重要的参考文档!!!)

http://www.cnblogs.com/mikewolf2002/p/3438166.html

      LBP的基本思想是以图像中某个像素为中心,对相邻像素进行阈值比较。如果中心像素的亮度大于等于它的相邻像素,把相邻像素标记为1,否则标记为0。我们可以用二进制数字来表示LBP图中的每个像素的LBP编码,比如下图中的中心像素,它的LBP编码为:00010011,其十进制值为19。

image

用公式表示就是:

image

其中(xc,yc)是中心像素,ic是灰度值,in是相邻像素的灰度值,s是一个符号函数:

image

在OpenCV的LBP算法中,固定的领域大小不能对不同规模的细节进行编码。所以基本的LBP算法被进一步推广为使用不同大小和形状的领域,采取圆形的领域并结合双线性插值运算,我们可以获得任意半径和任意数目的领域像素点。使用圆形的LBP算子:

对于一个点image, 它的近邻点 image用以下公式计算:

image

其中R是半径,p是样本点的个数。

如果就算的结果不在像素坐标上,我们则使用双线性插值(确定他的值)进行近似处理。

image

下面的代码中,我们分别实现了通常LBP图和圆形算子LBP图。

      elbp是圆形算子LBP函数,elbp1是通常LBP图,我们分别对lena的图像进行了处理,结果如下所示,从途中可以看出来,使用圆形算子的效果锐度更强。

#include "opencv2/core/core.hpp"
#include "opencv2/contrib/contrib.hpp"
#include "opencv2/highgui/highgui.hpp"#include <iostream>
#include <fstream>
#include <sstream>using namespace cv;
using namespace std;void elbp(Mat& src, Mat &dst, int radius, int neighbors){for(int n=0; n<neighbors; n++){// 采样点的计算float x = static_cast<float>(-radius * sin(2.0*CV_PI*n/static_cast<float>(neighbors)));float y = static_cast<float>(radius * cos(2.0*CV_PI*n/static_cast<float>(neighbors)));// 上取整和下取整的值int fx = static_cast<int>(floor(x));int fy = static_cast<int>(floor(y));int cx = static_cast<int>(ceil(x));int cy = static_cast<int>(ceil(y));// 小数部分float ty = y - fy;float tx = x - fx;// 设置插值权重float w1 = (1 - tx) * (1 - ty);float w2 =      tx  * (1 - ty);float w3 = (1 - tx) *      ty;float w4 =      tx  *      ty;// 循环处理图像数据for(int i=radius; i < src.rows-radius;i++){for(int j=radius;j < src.cols-radius;j++) {// 计算插值float t = static_cast<float>(w1*src.at<uchar>(i+fy,j+fx) + w2*src.at<uchar>(i+fy,j+cx) + w3*src.at<uchar>(i+cy,j+fx) + w4*src.at<uchar>(i+cy,j+cx));// 进行编码dst.at<uchar>(i-radius,j-radius) += ((t > src.at<uchar>(i,j)) || (std::abs(t-src.at<uchar>(i,j)) < std::numeric_limits<float>::epsilon())) << n;}}}}void elbp1(Mat& src, Mat &dst){// 循环处理图像数据for(int i=1; i < src.rows-1;i++){for(int j=1;j < src.cols-1;j++) {uchar tt = 0;int tt1 = 0;uchar u = src.at<uchar>(i,j);if(src.at<uchar>(i-1,j-1)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i-1,j)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i-1,j+1)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i,j+1)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i+1,j+1)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i+1,j)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i+1,j-1)>u) { tt += 1 <<tt1; } tt1++;if(src.at<uchar>(i-1,j)>u) { tt += 1 <<tt1; } tt1++;dst.at<uchar>(i-1,j-1) = tt;}}}int main(){Mat img = cv::imread("../lenna.jpg", 0);namedWindow("image");imshow("image", img);int radius, neighbors;radius = 1;neighbors = 8;//创建一个LBP//注意为了溢出,我们行列都在原有图像上减去2个半径Mat dst = Mat(img.rows-2*radius, img.cols-2*radius,CV_8UC1, Scalar(0));elbp1(img,dst);namedWindow("normal");imshow("normal", dst);Mat dst1 = Mat(img.rows-2*radius, img.cols-2*radius,CV_8UC1, Scalar(0));elbp(img,dst1,1,8);namedWindow("circle");imshow("circle", dst1);while(1)cv::waitKey(0);}

imageimageimage

我们换另外一张图,该图包括不同光照下的四副照片,再来看看LBP图的效果(可以看到,LBP在光照不均匀的人脸识别中可以取得很好的应用!):

image

image

image

这篇关于【opencv】LBP(局部二进制模式)算法的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705351

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

c++ 类成员变量默认初始值的实现

《c++类成员变量默认初始值的实现》本文主要介绍了c++类成员变量默认初始值,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录C++类成员变量初始化c++类的变量的初始化在C++中,如果使用类成员变量时未给定其初始值,那么它将被