Lucene Hack之通过缩小搜索结果集来提升性能

2024-02-13 05:18

本文主要是介绍Lucene Hack之通过缩小搜索结果集来提升性能,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、缘起

Lucene在索引文件上G之后的搜索性能下降很严重,随便跑个搜索就要上0.x秒。如果是单线程搜索那么性能尚可,总可以在0.x秒返回结果,如果是Web式的多线程访问,由于Lucene的内部机制导致数据被大量载入内存,用完后立即丢弃,随之引起JVM频繁GC,性能极其低下,1-10秒的长连接比比皆是。这也是世人为之诟病的Lucene应用瓶颈问题,那么是否有解决方法呢?

 

二、思路

我们来观察Google, Baidu的搜索,有一个总体的感觉就是搜索结果多的关键词耗时比较少,结果少的关键词耗时反而多,且结果多的时候会说“约******个结果”。隐士猜测Google, Baidu的算法是找到前n个结果后停止扫描索引,根据前n个结果来推断总共有多少个结果,此猜想可由Google, Baidu翻页限制而得到部分验证。

再看Lucene,其Hits.length()返回的总是精确的结果,如果可以让Lucene也返回模糊的结果,那么索引文件就算是10G也可以轻松应对了。

 

三、探索

隐士带着这个问题访名山、觅高人,可惜没有找到前人的成果,可能是隐士走的路不够勤,如有类似的解决方案,隐士不吝赐教。

无奈之下,隐士详细研究了Lucene 2.1.0源码,准备重新发明轮子。

一般来说大多数搜索应用中的Query都会落在BooleanQuery上,隐士就拿它开刀。一路看来,BooleanScorer2里的一个method吸引了隐士,代码如下:

 

	public void score(HitCollector hc) throws IOException {if (countingSumScorer == null) {initCountingSumScorer();}while (countingSumScorer.next()) {hc.collect(countingSumScorer.doc(), score());}}

  

 

 

while循环里嵌入写日志代码可证结果集有多大,此处就循环了多少次。countingSumScorer.next()的意思是找到下一个符合boolean规则的document,找到后放入HitCollector,这HitCollector后面会换个马甲放在大家熟悉的Hits里面。

         如果可以在这个while循环里嵌一个break,到一定数量就break出来,性能提升将相当明显。这个代码相当简单,果然大幅提高了性能,带来的副作用是结果不太准,这个可以通过调整业务模型、逻辑来修正。毕竟这是一条提升Lucene性能的有效方法。

细细想来,正是由于这个break会导致结果集大的关键词提前出来,搜索时间少,结果集小的关键词不可避免会走完整个索引,相应的搜索时间会长一点。

 

四、效果

由于具体嵌入代码的过程极其繁琐,隐士将在第二回详细讲解。这第一回先来个Big picture 历尽千辛万苦,隐士终于搞定了这套程序,效果可以从隐士做的视频搜索http://so.mdbchina.com/video/%E7%BE%8E%E5%A5%B3看出。

 

这个关键词“美女”可以找到18万个视频,平均0.5秒返回结果,现在用上了新算法,只要0.06x秒返回结果,而且返回结果足够好了,估算的8.5万个结果虽然离18万有很大差距,不过由于是估算的,差2-3倍应属可以接受的。

 

由算法的特性可知,while里面的hc.collect总可以在常量时间内完成,循环次数又是<=常量,该算法的时间复杂度只和BooleanQuery的复杂程度相关,和索引文件大小以及命中的Document在索引文件内的分布密度没有关系,因为BooleanQuery的复杂程度决定了countingSumScorer.next()需要经过多少次判断、多少次读取索引文件,countingSumScorer.next()正是整个算法中耗时不定的部分。

 

现在这个视频搜索的索引文件接近3G,热门关键词可以在0.0x秒返回结果,隐士相信即使以后索引文件上到10G,依然可以在0.0x秒返回结果。

 

(注:这个视频搜索实际使用效果会打折扣,因为后台索引也在这台机器上,以后会分服务器,现在暂时在一起。)

这篇关于Lucene Hack之通过缩小搜索结果集来提升性能的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704571

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

性能测试介绍

性能测试是一种测试方法,旨在评估系统、应用程序或组件在现实场景中的性能表现和可靠性。它通常用于衡量系统在不同负载条件下的响应时间、吞吐量、资源利用率、稳定性和可扩展性等关键指标。 为什么要进行性能测试 通过性能测试,可以确定系统是否能够满足预期的性能要求,找出性能瓶颈和潜在的问题,并进行优化和调整。 发现性能瓶颈:性能测试可以帮助发现系统的性能瓶颈,即系统在高负载或高并发情况下可能出现的问题

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

hdu1240、hdu1253(三维搜索题)

1、从后往前输入,(x,y,z); 2、从下往上输入,(y , z, x); 3、从左往右输入,(z,x,y); hdu1240代码如下: #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#inc

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

黑神话,XSKY 星飞全闪单卷性能突破310万

当下,云计算仍然是企业主要的基础架构,随着关键业务的逐步虚拟化和云化,对于块存储的性能要求也日益提高。企业对于低延迟、高稳定性的存储解决方案的需求日益迫切。为了满足这些日益增长的 IO 密集型应用场景,众多云服务提供商正在不断推陈出新,推出具有更低时延和更高 IOPS 性能的云硬盘产品。 8 月 22 日 2024 DTCC 大会上(第十五届中国数据库技术大会),XSKY星辰天合正式公布了基于星

hdu 4517 floyd+记忆化搜索

题意: 有n(100)个景点,m(1000)条路,时间限制为t(300),起点s,终点e。 访问每个景点需要时间cost_i,每个景点的访问价值为value_i。 点与点之间行走需要花费的时间为g[ i ] [ j ] 。注意点间可能有多条边。 走到一个点时可以选择访问或者不访问,并且当前点的访问价值应该严格大于前一个访问的点。 现在求,从起点出发,到达终点,在时间限制内,能得到的最大

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

hdu4277搜索

给你n个有长度的线段,问如果用上所有的线段来拼1个三角形,最多能拼出多少种不同的? import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动