干货丨一文带你了解灾备系统的衡量指标

2024-02-13 04:50

本文主要是介绍干货丨一文带你了解灾备系统的衡量指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文转自@灾备有道,作者:Q先生。

灾备恢复的衡量指标

核心指标:RTO,RPO

RTO(Recovery Time Objective)
RTO是指灾难发生后,从IT系统崩溃导致业务停顿开始,到IT系统完全恢复,业务恢复运营为止的这段时间长度。RTO用于衡量业务从停顿到恢复的所需时间。

RPO(Recovery Point Objective)
IT系统崩溃后,可以恢复到某个历史时间点,从历史时间点到灾难发生的时间点的这段时间长度就称为RPO。RPO用于衡量业务恢复所允许丢失的数据量。

我们来举个例子,假设在业务系统正常运行的情况下,随着时间的推移,会持续产生新的业务数据。IT运维人员考虑到业务的重要性,小心又谨慎,写了个脚本对业务系统进行周期性的备份。

虽然机智的IT运维人员已经非常小心,但是还是避免不了系统出现故障。在发现系统故障后,IT运维人员迅速响应,利用最近一次的备份数据进行恢复。经过漫长的等待,IT系统最终恢复正常。

从上图可以直观看出,RPO是 “备份时间点” 到 “IT系统出现故障” 的时间长度,RTO是指 “IT系统出现故障” 到 “IT系统恢复正常” 的时间长度。

在RPO的这段时间内,存在一部分实际数据的丢失,所以一般认为RPO越小,丢失的数据量就越小。在RPO+RTO的这段时间内,本来有预期的业务数据增长,但由于IT系统故障需要时间修复,这部分的预期增长就损失掉了。可见RTO+RPO越小,对业务营收的损失也就越小。因此,越重要的业务越需要保证RPO和RTO趋近于0,当然所需要的投入也就越大。RPO和RPO也成为衡量灾难恢复的最核心指标。

其他指标

随着灾备技术的不断升级,灾备系统的建设越来越复杂,就开始出现了一些新的指标。虽然这里边部分指标实在是不怎么知名,但为了满足大家的好奇心,还是费点周折,给大家解释一下。

RRO(Recovery Reliability Objective)
恢复可靠性指标RRO,用于衡量业务恢复的可靠性。如果一个业务连续性系统在10次恢复/切换中出现了2次失败,那么这个可靠性就只有80%。虽然成功的恢复/切换可以帮助你短时间内的恢复业务,但如果恢复/切换失败了,那可能就需要花更多的时间来排查和解决问题。因此,将RRO和RTO结合起来可以更好的评估灾难恢复的时间。

基于上面的案例,假设IT运维人员写了不错的备份脚本,但是恢复脚本没有经过详细的测试,质量不咋滴。在IT系统修复过程中,总出现恢复失败的情况,需要边定位失败的原因边进行恢复。那么我们就可以认为这个脚本的RRO指标很低,会导致RTO变长。

RIO (Recovery Integrity Objective)
当灾备系统因为逻辑错误或数据丢失,就会造成实际恢复/切换的数据同样存在逻辑错误,或者数据丢失/不完整的情况。因此,单独的RPO不能保证灾备系统对数据丢失的防范能力,故引入恢复完整性指标****RIO。RIO指标可以反映出业务系统灾难恢复到某个正确完整的状态的能力。

基于上面的案例,假设IT运维人员写的备份脚本也出了问题,数据恢复是恢复出来了,但是只恢复了一部分,还有一部分数据因为脚本存在bug漏备了。那么我们就可以认为这个脚本的RIO指标也很低,RPO数据丢失的基础上再添损失。 说到这里,可怜的IT运维人员背了锅,也许你该考虑采购专业的灾备产品了。

DOO(Degraded Operations Objective)
DOO 是指灾难事件发生期间数据中心不可用时,关键业务系统在灾备中心运行的服务级别允许降低到一个可接受程度。这意味着灾难事件发生时,为了加快恢复速度,可以允许关键业务恢复到一个较低的服务级别,这个事先确定的允许降低的服务级别就是 DOO。
服务降级一般是由IT系统本身提供的能力,并不由灾备厂商来提供,当然专业的业务连续性管理也会将IT系统本身的容错、服务降级能力考虑在内。

NRO(Network Recovery Objective)
网络恢复目标NRO 是指在灾难发生后切换到灾备中心所需的时间。在这一预定时间内不仅要求将网络连接从数据中心切换到灾备中心,还要使用户的网络访问能够成功地转移到灾备中心。

灾备恢复的三个层次

在行业中,一般认为灾备分为3个等级:**数据级灾备、应用级灾备、业务级灾备。**其中数据级和应用级的灾备一般都在IT系统的范畴,可以通过专业的灾备产品做到。业务级灾备在数据级、应用级的基础上,还需要对IT系统之外的因素进行保障,比如办公地点、办公人员等等。

数据级灾备的关注点在于保证用户的数据不会丢失或者遭到破坏。高级的数据级灾备会考虑将本地的通过某些手段(人工/灾备工具)保存到异地。而应用级灾备更强调实际的IT系统可以在遇到灾难后能够直接接管。一般来讲应用级灾备需要在异地灾备中心有完整的设备、网络条件,借助专业灾备产品做到生产中心到灾备中心的数据同步。

国际标准SHARE78的七级灾备

目前,通用的灾难恢复标准采用的是 1992 年在 AnaheimM028 会议上制定的 SHARE78 标准。根据定义,灾备方案可以根据以下主要方面所达到的程度而分为七级:

Tier0 层:没有异地数据 (No off-site Data)
即没有任何异地备份或应急计划。数据仅在本地进行备份恢复,没有数据送往异地。

Tier1 层:PTAM 卡车运送访问方式 (Pickup Truck Access Method)
异地备份 , 能够备份所需要的信息并将它存储到异地。PTAM 指将本地备份的数据用交通工具送到远方。这种方案相对来说成本较低,但难于管理。

Tier2 层:PTAM 卡车运送访问方式 + 热备份中心 (PTAM + Hot Center)
相当于 Tier1 再加上热备份中心能力。热备份中心就是指在异地制定相应的灾难恢复计划,将运送到此处的数据定期的进行恢复,以确保生产中心出现灾难后热备份中心可以尽快接管。当然,热备份中心拥有足够的硬件和网络设备去支持关键应用。

Tier3 层:电子链接 (Electronic Vaulting)
在 Tier2 的基础上用网络传输取代了卡车进行数据的传送。

Tier4 层:活动状态的备份中心 (Active Secondary Center)
指两个中心同时处于活动状态并同时互相备份。在这种场景下,两中心通过备份软件系统进行周期性的备份和恢复。在灾难发生时,关键应用的恢复也可降低到小时级或分钟级。

Tier5层:两个活动的数据中心,确保数据一致性的两阶段提交(Two-Site Two-Phase Commit)
它提供了更好的数据完整性和一致性。Tier5 要求两中心的数据能够同时更新。在灾难发生时,仅是传送中的数据被丢失,恢复时间被降低到分钟级。

Tier6 层:0 数据丢失 (Zero Data Loss),自动系统故障切换
Tier6 可以实现 0 数据丢失,是灾难恢复的最高级别,在本地和远程的所有数据被更新的同时,利用了双重在线存储和网络切换能力,当发生灾难时,能够提供跨站点动态负载平衡和自动系统。

这篇关于干货丨一文带你了解灾备系统的衡量指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704519

相关文章

什么是cron? Linux系统下Cron定时任务使用指南

《什么是cron?Linux系统下Cron定时任务使用指南》在日常的Linux系统管理和维护中,定时执行任务是非常常见的需求,你可能需要每天执行备份任务、清理系统日志或运行特定的脚本,而不想每天... 在管理 linux 服务器的过程中,总有一些任务需要我们定期或重复执行。就比如备份任务,通常会选在服务器资

TP-LINK/水星和hasivo交换机怎么选? 三款网管交换机系统功能对比

《TP-LINK/水星和hasivo交换机怎么选?三款网管交换机系统功能对比》今天选了三款都是”8+1″的2.5G网管交换机,分别是TP-LINK水星和hasivo交换机,该怎么选呢?这些交换机功... TP-LINK、水星和hasivo这三台交换机都是”8+1″的2.5G网管交换机,我手里的China编程has

一文带你搞懂Nginx中的配置文件

《一文带你搞懂Nginx中的配置文件》Nginx(发音为“engine-x”)是一款高性能的Web服务器、反向代理服务器和负载均衡器,广泛应用于全球各类网站和应用中,下面就跟随小编一起来了解下如何... 目录摘要一、Nginx 配置文件结构概述二、全局配置(Global Configuration)1. w

基于Qt实现系统主题感知功能

《基于Qt实现系统主题感知功能》在现代桌面应用程序开发中,系统主题感知是一项重要的功能,它使得应用程序能够根据用户的系统主题设置(如深色模式或浅色模式)自动调整其外观,Qt作为一个跨平台的C++图形用... 目录【正文开始】一、使用效果二、系统主题感知助手类(SystemThemeHelper)三、实现细节

CentOS系统使用yum命令报错问题及解决

《CentOS系统使用yum命令报错问题及解决》文章主要讲述了在CentOS系统中使用yum命令时遇到的错误,并提供了个人解决方法,希望对大家有所帮助,并鼓励大家支持脚本之家... 目录Centos系统使用yum命令报错找到文件替换源文件为总结CentOS系统使用yum命令报错http://www.cppc

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设