老SDRAM和DDR SDRAM时序图与信号完整性仿真结合运用(2) -版本博客图片丢失,增加图片后又不能上传,shit.

本文主要是介绍老SDRAM和DDR SDRAM时序图与信号完整性仿真结合运用(2) -版本博客图片丢失,增加图片后又不能上传,shit.,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

前一段时间只是以2410和6410时序图简单归纳了一下,现在将时序基础概念和详细计算过程彻底理一遍。    

   传播延迟

     信号从缓冲器出来之后,就要经过传输线到接收终端,信号在传输线上的传输的延时我们称为传播延迟(propagation delay),属于器件外部的延迟,它只和信号的传播速度和线长有关。

     最大/最小飞行时间

     飞行时间(Flight Time)参数,包括最大飞行时间(Max Flight Time)和最小飞行时间(Min Flight Time)。飞行时间包含了传播延迟和信号上升沿变化这两部分因素。在较轻的负载(如单负载)情况下,驱动端的上升沿几乎和接收端的信号的上升沿平行(如上图),所以这时候平均飞行时间和传播延迟时间大体相等;但如果在重负载(如多负载)的情况下,接收信号的上升沿明显变缓,这时候平均飞行时间就会远远大于信号的传播延迟。这里说的平均飞行时间是指Buffer波形的Vms到接收端波形Vms之间的延时,这个参数只能用于时序的估算,准确的时序分析一定要通过仿真测量最大/最小飞行时间来计算。上面只是对信号上升沿的分析,对于下降沿来说,同样存在着最大/最小飞行时间的参数,如下图。在时序计算时我们实际取的最大飞行时间是在上升沿和下降沿中取最长的那个飞行时间,而最小飞行时间则是取上升和下降沿中最短的那个飞行时间。也有些时候,人们对信号的最大/最小飞行时间还有其它称谓,比如在Cadence软件中,就将最大飞行时间称为最终稳定延时(Final Settle Delay),而将最小飞行时间称为最早开关延时(First Switch Delay)。

 

如下进行详细计算:

CPU范例

 

假设MCU的时钟频率为66MHz,时钟周期为15.15ns,其SDRAM的接口参数见下表:

明:MCU 在读SDRAM数据时,对输入数据的最小保持时间要求为3ns;对输入数据的最小setup时间       Tsetup_MCUin_min=Tclk-Taccess_time_max=15.15ns-10ns=5.15ns。MCU在对SDRAM写数据时,MCU的数据输出的Tsetup_MCUout =3ns,Thold_MCUout =7.5ns

SDRAM(例)

 

 说明:以133MHz为例,在对SDRAM读数据时,SDRAM的数据输出内部延迟时间

Tco_data_SDRAMout= Tacs_SDRAMout= Tclk-Tsetup_SDRAMout,其最大值为6ns(也即SDRAM的数据输出的setup时间最小为15.15-6=9.15ns),其最小值由data-out hold time_min(2ns)决定。在对SDRAM写数据时,SDRAM对输入的数据的最小保持时间Thold_SDRAMin=0.8ns,最小建立时间Tsetup_SDRAMin =1.5ns。

SDRAM的读时序

时序说明

MCU_CLK输出 一 SDRAM_CLK输入 一 经过 Tacs _ sdram之后数据送到SDRAM数据口一 数据传到MCU数据口一 SDRAM的后续时钟源数据保留Toh_sdram一 同时MCU侧进行数据采样。

由于SDRAM在输出数据时,其选取时钟来自于MCU,因此属于变型的共同时钟系统的通讯结构。

时序约束公式

由于MCU内部包含clock buffer,此时可忽略Tflt clka,也暂不考jitter,则时序约束公式简化为:

Tsetup_marin_SDRAM_read = Tcycle- Tflt_clkb- Tflt_data- Tco_data Tsetup

                        = Tclk- Tclk_delay Tdata_delay Tco_data Tsetup

                        = Tsetup_SDRAMout_max - Tclk_delay Tdata_delay Tsetup

Thold_ margin_SDRAM_read = Tco_data + Tdata_delay + Tclk_delay Thold

                         = Thold_SDRAMout_min + Tdata_delay + Tclk_delay Thold

(备注:Tdata_delay 和Tclk_delay均为走线延迟时间,并忽略和Flight的差异)

读时序的约束条件

计算时间裕量:

Tsetup_margin_SDRAM_read = Tsetup_SDRAMout_max - Tclk_delay Tdata_delay Tsetup

                     = 9.15ns - Tclk_delay Tdata_delay-5.15ns

                     = 4ns - Tclk_delay Tdata_delay > 0ns

                     Tdata_delay + Tclk_delay < 4ns

(备注:因为SDRAM输出的setup时间较长,相对于MCU的读要求,有4ns的裕量,因此,数据线和时钟线 的延迟之和,不能超过这个裕量。)

Thold_ margin_SDRAM_read = Thold_SDRAMout_min + Tdata_delay + Tclk_delay Thold_MCUin_min

                     = 2ns + Tdata_delay + Tclk_delay 3ns > 0ns

                     Tdata_delay + Tclk_delay > 1ns

(备注:如果SDRAM输出的hold时间大于MCU的hold要求,则上述约束条件自动满足;但SDRAM器件输出的hold时间趋于缩短,因此,需要通过走线延迟的方式来“缩短”setup时间,从而补偿和加长在MCU接收端的数据hold时间。)

SDRAM的写时序

 

时序说明

    由于MCU在发送数据的同时,也负责发送数据选通时钟,因此属于源同步系统。

时序约束公式

    Tsetup_margin_SDRAM_write= Tclk_delay + Tsetup_MCUout - Tdata_delay – Tsetup_SDRAMin

                                    = Tclk_delay + 3ns- Tdata_delay1.5ns

                                        Tclk_delay - Tdata_delay>-1.5ns

Thold_margin_SDRAM_write = Tdata_delay + Thold_MCUout –Tclk_delay– Thold_SDRAMin

           = Tdata_delay +7.5ns –Tclk_delay0.8ns

                          Tclk_delay - Tdata_delay<6.7ns

约束条件总结

读时序的约束条件

    1ns < Tdata_delay + Tclk_delay < 4ns

    考虑SDRAM各品牌的差异性,进一步加严约束,以提高设计的兼容性:

    即 1.5ns < Tdata_delay + Tclk_delay < 3ns

写时序的约束条件

    -1.5ns <Tclk_delay - Tdata_delay <6.7ns

    实际布线时,时钟线通常比数据线、地址线等线路的长度要长些或等长,因此

    0ns <Tclk_delay - Tdata_delay<6.7ns

综合的约束条件

    0ns <Tclk_delay - Tdata_delay<3ns

    1.5ns < Tdata_delay + Tclk_delay < 3ns (读数据的约束条件,相对较困难实现)

    按表面微带线150ps/in的计算,则数据线(时钟线)的长度不应超过10in 即250mm。

    按内层带状线180ps/in的计算,则数据线(时钟线)的长度不应超过8.3in 即210mm。

 

DDR的时序约束条件

 

 

 

说明(以DDR266为例)

        Tclk=7.5ns,Tch = Tcl=0.45*Tclk=3.38ns

        Tsetup_DDRin_min = 0.5ns

        Thold_DDRin_min = 0.5ns

        Tdv_SDRAMout= Tsetup_DDRout + Thold_DDRout

                            =tQH-tDQSQ=tHP tQHS tDQSQ=0.45*Tch-0.75ns-0.5ns=2.12ns

DDR的写约束条件

上图为某ARM11内核的MCU 的写DDR时序和参数(133MHz)分析,典型的源同步时序系统,在时钟的上下沿读取数据。

时序约束公式

    同SDRAM

Tsetup_margin_DDR_write= Tclk_delay + Tsetup_MCUout - Tdata_delay – Tsetup_SDRAMin

                                           = Tclk_delay + 0.95ns- Tdata_delay0.5ns

                                           Tclk_delay - Tdata_delay>-0.45ns

Thold_margin_DDR_write = Tdata_delay + Thold_MCUout –Tclk_delay– Thold_SDRAMin

                   = Tdata_delay +0.95ns –Tclk_delay0.5ns

                                          Tclk_delay - Tdata_delay<0.45ns

DDR的读约束条件

    上图为某ARM11内核的MCU 的读DDR时序和参数(133MHz)

    由于是在DQS的高(低)电平中间读取数据,因此需要按数据窗口的概念来修改约束条件:

    DDR 的理想数据窗口周期为0.45*Tclk=0.45*7.5ns=3.38ns(按最小值计算)

    DDR输出的实际数据窗口为Tdv_SDRAMout=2.12ns

    DDR输出数据和DQS的SKEW时间为0.5ns

    则Tdata_delay-Tclk_delay<tDQSQ_MCU – tDQSQ_DDR=0.85ns-0.5ns=0.35ns

       及 0.5ns+2.12ns +(Tdata_delay-Tclk_delay) >tQH_MCU=2.3ns

       (Tdata_delay-Tclk_delay)>-0.32ns

-0.32ns<Tdata_delay-Tclk_delay<0.35ns

DDR约束条件总结

读时序约束

-0.32ns<Tdata_delay -Tclk_delay<0.35ns

写时序约束

    -0.45ns<Tdata_delay -Tclk_delay<0.45ns

综合约束条件

    -0.32ns<Tdata_delay-Tclk_delay<0.35ns

即数据线和DQS线的传输延迟SKEW要严格控制在+/-0.3ns以内,此要求比SDRAM严格得多。

按表面微带线150ps/in的计算,则数据线和DQS线的长度偏差不应超过2in 即50mm。

按内层带状线180ps/in的计算,则数据线(时钟线)的长度不应超过1.6in 即40mm。

由于这个时间很短,信号的上升沿(下降沿)时间的影响不能忽略,也即度量延迟SKEW时,需要以信号的飞行时间(Flight)来取代delay时间,因此上述的长度偏差只是做参考,实际走线时要尽可能做到等长。

DDR对数据线的长度未做要求。

这篇关于老SDRAM和DDR SDRAM时序图与信号完整性仿真结合运用(2) -版本博客图片丢失,增加图片后又不能上传,shit.的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/704360

相关文章

IDEA如何切换数据库版本mysql5或mysql8

《IDEA如何切换数据库版本mysql5或mysql8》本文介绍了如何将IntelliJIDEA从MySQL5切换到MySQL8的详细步骤,包括下载MySQL8、安装、配置、停止旧服务、启动新服务以及... 目录问题描述解决方案第一步第二步第三步第四步第五步总结问题描述最近想开发一个新应用,想使用mysq

java脚本使用不同版本jdk的说明介绍

《java脚本使用不同版本jdk的说明介绍》本文介绍了在Java中执行JavaScript脚本的几种方式,包括使用ScriptEngine、Nashorn和GraalVM,ScriptEngine适用... 目录Java脚本使用不同版本jdk的说明1.使用ScriptEngine执行javascript2.

C#中图片如何自适应pictureBox大小

《C#中图片如何自适应pictureBox大小》文章描述了如何在C#中实现图片自适应pictureBox大小,并展示修改前后的效果,修改步骤包括两步,作者分享了个人经验,希望对大家有所帮助... 目录C#图片自适应pictureBox大小编程修改步骤总结C#图片自适应pictureBox大小上图中“z轴

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

Java文件上传的多种实现方式

《Java文件上传的多种实现方式》文章主要介绍了文件上传接收接口的使用方法,包括获取文件信息、创建文件夹、保存文件到本地的两种方法,以及如何使用Postman进行接口调用... 目录Java文件上传的多方式1.文件上传接收文件接口2.接口主要内容部分3.postman接口调用总结Java文件上传的多方式1

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

无线路由器哪个品牌好用信号强? 口碑最好的三个路由器大比拼

《无线路由器哪个品牌好用信号强?口碑最好的三个路由器大比拼》不同品牌在信号覆盖、稳定性和易用性等方面各有特色,如何在众多选择中找到最适合自己的那款无线路由器呢?今天推荐三款路由器让你的网速起飞... 今天我们来聊聊那些让网速飞起来的路由器。在这个信息爆炸的时代,一个好路由器简直就是家庭网编程络的心脏。无论你

你的华为手机升级了吗? 鸿蒙NEXT多连推5.0.123版本变化颇多

《你的华为手机升级了吗?鸿蒙NEXT多连推5.0.123版本变化颇多》现在的手机系统更新可不仅仅是修修补补那么简单了,华为手机的鸿蒙系统最近可是动作频频,给用户们带来了不少惊喜... 为了让用户的使用体验变得很好,华为手机不仅发布了一系列给力的新机,还在操作系统方面进行了疯狂的发力。尤其是近期,不仅鸿蒙O