代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充)

本文主要是介绍代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

491.递增子序列

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个整型数组, 你的任务是找到所有该数组的递增子序列,递增子序列的长度至少是2。

示例:

  • 输入: [4, 6, 7, 7]
  • 输出: [[4, 6], [4, 7], [4, 6, 7], [4, 6, 7, 7], [6, 7], [6, 7, 7], [7,7], [4,7,7]]

说明:

  • 给定数组的长度不会超过15。
  • 数组中的整数范围是 [-100,100]。
  • 给定数组中可能包含重复数字,相等的数字应该被视为递增的一种情况。

4、视频链接:

回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

5、思路:

这个递增子序列比较像是取有序的子集。而且本题也要求不能有相同的递增子序列。

这又是子集,又是去重,是不是不由自主的想起了刚刚讲过的90.子集II(opens new window)。

就是因为太像了,更要注意差别所在,要不就掉坑里了!

在90.子集II(opens new window)中我们是通过排序,再加一个标记数组来达到去重的目的。

而本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。

所以不能使用之前的去重逻辑!

本题给出的示例,还是一个有序数组 [4, 6, 7, 7],这更容易误导大家按照排序的思路去做了。

为了有鲜明的对比,我用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backTracking(nums, 0);return result;}private void backTracking(int[] nums, int startIndex) {// 递增子序列的长度至少是2if (path.size() >= 2) {result.add(new ArrayList<>(path));// 注意这里不要加return,因为要取树上的所有节点}// 定义一个hashset来剪枝HashSet<Integer> hs = new HashSet<>();for (int i = startIndex; i < nums.length; i++) {// 剪枝// 1. path里已经包含的元素// 2. 当前元素比path里最后一个元素还小// 3. 当前元素已经在hs里了if (!path.isEmpty() && path.get(path.size() - 1) > nums[i] || hs.contains(nums[i])) {continue;}hs.add(nums[i]);path.add(nums[i]);backTracking(nums, i + 1);path.removeLast();}}
}

46.全排列

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

4、视频链接:

回溯算法解决子集问题,树上节点都是目标集和! | LeetCode:78.子集_哔哩哔哩_bilibili

5、首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

class Solution {List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果public List<List<Integer>> subsets(int[] nums) {subsetsHelper(nums, 0);return result;}private void subsetsHelper(int[] nums, int startIndex) {result.add(new ArrayList<>(path));//「遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合」。if (startIndex >= nums.length) { // 终止条件可不加return;}for (int i = startIndex; i < nums.length; i++) {path.add(nums[i]);subsetsHelper(nums, i + 1);path.removeLast();}}
}

47.全排列II

1、题目链接:力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台

2、文章讲解:代码随想录

3、题目:

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

  • 输入:nums = [1,1,2]
  • 输出: [[1,1,2], [1,2,1], [2,1,1]]

示例 2:

  • 输入:nums = [1,2,3]
  • 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

提示:

  • 1 <= nums.length <= 8
  • -10 <= nums[i] <= 10

4、视频链接:

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

class Solution {// 存放结果List<List<Integer>> result = new ArrayList<>();// 暂存结果List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.fill(used, false);Arrays.sort(nums);backTrack(nums, used);return result;}private void backTrack(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {// used[i - 1] == true,说明同⼀树⽀nums[i - 1]使⽤过// used[i - 1] == false,说明同⼀树层nums[i - 1]使⽤过// 如果同⼀树层nums[i - 1]使⽤过则直接跳过if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}// 如果同⼀树⽀nums[i]没使⽤过开始处理if (used[i] == false) {used[i] = true;// 标记同⼀树⽀nums[i]使⽤过,防止同一树枝重复使用path.add(nums[i]);backTrack(nums, used);path.remove(path.size() - 1);// 回溯,说明同⼀树层nums[i]使⽤过,防止下一树层重复used[i] = false;// 回溯}}}
}

这篇关于代码随想录算法训练营第二十九天 |491.递增子序列,46.全排列,47.全排列II(待补充)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701745

相关文章

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当