bert-vits2本地部署报错疑难问题汇总

2024-02-11 23:04

本文主要是介绍bert-vits2本地部署报错疑难问题汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

环境:

bert-vits2.3
win 和wsl

问题描述:

bert-vits2本地部署报错疑难问题汇总

解决方案:

问题1:

Conda安装requirements里面依赖出现ERROR: No matching distribution found for opencc==1.1.6

解决方法

需要在 Python 3.11 上使用 OpenCC
打开requirements把opencc== 1.16改成1.17保存文本

问题2:
error: Microsoft Visual C++ 14.0 or greater is required. Get it with "Microsoft C++ Build Tool

解决方法

conda install libpython m2w64-toolchain -c msys2
 conda install -c conda-forge jieba_fast

安装VS2019

单独安装2个组件

在这里插入图片描述

问题3:

训练报错

TypeError: Webui_config.init() got an unexpected keyword argument ‘fp16_run’

解决方法

配置文件没有更新,更新配置文件

问题4:

训练报错

[rank0]: OSError: Error no file named pytorch_model.bin, tf_model.h5, model.ckpt.index or flax_model.msgpack found in directory ./slm/wavlm-base-plus.

解决方法

没有下载pytorch_model.bin 在下面这个文件夹

在这里插入图片描述

问题5:

训练报错

RuntimeError: The expanded size of the tensor (1024) must match the existing size (2048) at non-singleton dimension 0. Target sizes: [1024, 157]. Tensor sizes: [2048, 157]

解决方法

删除原来生产bert文件重新生成

问题6:

raise KeyError("param ‘initial_lr’ is not specified "
[rank0]: KeyError: “param ‘initial_lr’ is not specified in param_groups[0] when resuming an optimizer”

解决方法


优化爆了,手动改优化器train_ms.py代码# 更改优化器的初始学习率参数
optim_g.param_groups[0]['initial_lr'] = 0.1
optim_d.param_groups[0]['initial_lr'] = 0.1
optim_wd.param_groups[0]['initial_lr'] = 0.1
optim_dur_disc.param_groups[0]['initial_lr'] = 0.1# 创建调度器并应用更改后的优化器
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
scheduler_wd = torch.optim.lr_scheduler.ExponentialLR(optim_wd, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2
)
if net_dur_disc is not None:scheduler_dur_disc = torch.optim.lr_scheduler.ExponentialLR(optim_dur_disc, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)

这篇关于bert-vits2本地部署报错疑难问题汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701044

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

解决systemctl reload nginx重启Nginx服务报错:Job for nginx.service invalid问题

《解决systemctlreloadnginx重启Nginx服务报错:Jobfornginx.serviceinvalid问题》文章描述了通过`systemctlstatusnginx.se... 目录systemctl reload nginx重启Nginx服务报错:Job for nginx.javas

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

Python项目打包部署到服务器的实现

《Python项目打包部署到服务器的实现》本文主要介绍了PyCharm和Ubuntu服务器部署Python项目,包括打包、上传、安装和设置自启动服务的步骤,具有一定的参考价值,感兴趣的可以了解一下... 目录一、准备工作二、项目打包三、部署到服务器四、设置服务自启动一、准备工作开发环境:本文以PyChar

VMWare报错“指定的文件不是虚拟磁盘“或“The file specified is not a virtual disk”问题

《VMWare报错“指定的文件不是虚拟磁盘“或“Thefilespecifiedisnotavirtualdisk”问题》文章描述了如何修复VMware虚拟机中出现的“指定的文件不是虚拟... 目录VMWare报错“指定的文件不是虚拟磁盘“或“The file specified is not a virt

springboot 加载本地jar到maven的实现方法

《springboot加载本地jar到maven的实现方法》如何在SpringBoot项目中加载本地jar到Maven本地仓库,使用Maven的install-file目标来实现,本文结合实例代码给... 在Spring Boothttp://www.chinasem.cn项目中,如果你想要加载一个本地的ja

centos7基于keepalived+nginx部署k8s1.26.0高可用集群

《centos7基于keepalived+nginx部署k8s1.26.0高可用集群》Kubernetes是一个开源的容器编排平台,用于自动化地部署、扩展和管理容器化应用程序,在生产环境中,为了确保集... 目录一、初始化(所有节点都执行)二、安装containerd(所有节点都执行)三、安装docker-