机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

本文主要是介绍机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:

朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。本文详述了朴素贝叶斯分类的统计学原理,并在文本分类中实现了该算法。朴素贝叶斯分类器用于文本分类时有多项式模型和贝努利模型两种,本算法实现了这两种模型并分别用于垃圾邮件检测,性能显著。

Note:个人认为,《机器学习实战》朴素贝叶斯这一章关于文本分类的算法是错误的,无论是其贝努利模型(书中称“词集”)还是多项式模型(书中称“词袋”),因为其计算公式不符合多项式和贝努利模型。详见本文“文本分类的两种模型”。

(一)认识朴素贝叶斯分类

决策树算法中提到朴素贝叶斯分类模型是应用最为广泛的分类模型之一,朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种分别是:朴素贝叶斯分类、TAN(tree augmented Bayes network)算法、BAN(BN Augmented Naive Bayes)分类和GBN(General Bayesian Network)。本文重点详细阐述朴素贝叶斯分类的原理,通过Python实现了该算法,并介绍了朴素贝叶斯分类的一个应用--垃圾邮件检测。

朴素贝叶斯的思想基础是这样的:根据贝叶斯公式,计算待分类项x出现的条件下各个类别(预先已知的几个类别)出现的概率P(yi|x),最后哪个概率值最大,就判定该待分类项属于哪个类别。训练数据的目的就在于获取样本各个特征在各个分类下的先验概率。之所以称之为“朴素”,是因为贝叶斯分类只做最原始、最简单的假设--1,所有的特征之间是统计独立的;2,所有的特征地位相同。那么假设某样本x有a1,...,aM个属性,那么有:

P(x)=P(a1,...,aM) = P(a1)*...*P(aM)

朴素贝叶斯分类发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率,其优点是算法简单、所需估计参数很少、对缺失数据不太敏感。理论上,朴素贝叶斯分类与其他分类方法相比具有最小的误差率,但实际上并非总是如此,因为朴素贝叶斯分类假设样本各个特征之间相互独立,这个假设在实际应用中往往是不成立的,从而影响分类正确性。因此,当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。总的来说,朴素贝叶斯分类算法简单有效,对两类、多类问题都适用。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。

(二)朴素贝叶斯分类数学原理

1,贝叶斯定理

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。


其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

P(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。

P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。

P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

P(B)是B的先验概率或边缘概率,也作

这篇关于机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701002

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;