机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

本文主要是介绍机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:

朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。本文详述了朴素贝叶斯分类的统计学原理,并在文本分类中实现了该算法。朴素贝叶斯分类器用于文本分类时有多项式模型和贝努利模型两种,本算法实现了这两种模型并分别用于垃圾邮件检测,性能显著。

Note:个人认为,《机器学习实战》朴素贝叶斯这一章关于文本分类的算法是错误的,无论是其贝努利模型(书中称“词集”)还是多项式模型(书中称“词袋”),因为其计算公式不符合多项式和贝努利模型。详见本文“文本分类的两种模型”。

(一)认识朴素贝叶斯分类

决策树算法中提到朴素贝叶斯分类模型是应用最为广泛的分类模型之一,朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种分别是:朴素贝叶斯分类、TAN(tree augmented Bayes network)算法、BAN(BN Augmented Naive Bayes)分类和GBN(General Bayesian Network)。本文重点详细阐述朴素贝叶斯分类的原理,通过Python实现了该算法,并介绍了朴素贝叶斯分类的一个应用--垃圾邮件检测。

朴素贝叶斯的思想基础是这样的:根据贝叶斯公式,计算待分类项x出现的条件下各个类别(预先已知的几个类别)出现的概率P(yi|x),最后哪个概率值最大,就判定该待分类项属于哪个类别。训练数据的目的就在于获取样本各个特征在各个分类下的先验概率。之所以称之为“朴素”,是因为贝叶斯分类只做最原始、最简单的假设--1,所有的特征之间是统计独立的;2,所有的特征地位相同。那么假设某样本x有a1,...,aM个属性,那么有:

P(x)=P(a1,...,aM) = P(a1)*...*P(aM)

朴素贝叶斯分类发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率,其优点是算法简单、所需估计参数很少、对缺失数据不太敏感。理论上,朴素贝叶斯分类与其他分类方法相比具有最小的误差率,但实际上并非总是如此,因为朴素贝叶斯分类假设样本各个特征之间相互独立,这个假设在实际应用中往往是不成立的,从而影响分类正确性。因此,当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。总的来说,朴素贝叶斯分类算法简单有效,对两类、多类问题都适用。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。

(二)朴素贝叶斯分类数学原理

1,贝叶斯定理

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。


其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

P(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。

P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。

P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

P(B)是B的先验概率或边缘概率,也作

这篇关于机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701002

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx