机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用

本文主要是介绍机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

摘要:

朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。总的来说:当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。本文详述了朴素贝叶斯分类的统计学原理,并在文本分类中实现了该算法。朴素贝叶斯分类器用于文本分类时有多项式模型和贝努利模型两种,本算法实现了这两种模型并分别用于垃圾邮件检测,性能显著。

Note:个人认为,《机器学习实战》朴素贝叶斯这一章关于文本分类的算法是错误的,无论是其贝努利模型(书中称“词集”)还是多项式模型(书中称“词袋”),因为其计算公式不符合多项式和贝努利模型。详见本文“文本分类的两种模型”。

(一)认识朴素贝叶斯分类

决策树算法中提到朴素贝叶斯分类模型是应用最为广泛的分类模型之一,朴素贝叶斯分类是贝叶斯分类器的一种,贝叶斯分类算法是统计学的一种分类方法,利用概率统计知识进行分类,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率(即该对象属于某一类的概率),然后选择具有最大后验概率的类作为该对象所属的类。目前研究较多的贝叶斯分类器主要有四种分别是:朴素贝叶斯分类、TAN(tree augmented Bayes network)算法、BAN(BN Augmented Naive Bayes)分类和GBN(General Bayesian Network)。本文重点详细阐述朴素贝叶斯分类的原理,通过Python实现了该算法,并介绍了朴素贝叶斯分类的一个应用--垃圾邮件检测。

朴素贝叶斯的思想基础是这样的:根据贝叶斯公式,计算待分类项x出现的条件下各个类别(预先已知的几个类别)出现的概率P(yi|x),最后哪个概率值最大,就判定该待分类项属于哪个类别。训练数据的目的就在于获取样本各个特征在各个分类下的先验概率。之所以称之为“朴素”,是因为贝叶斯分类只做最原始、最简单的假设--1,所有的特征之间是统计独立的;2,所有的特征地位相同。那么假设某样本x有a1,...,aM个属性,那么有:

P(x)=P(a1,...,aM) = P(a1)*...*P(aM)

朴素贝叶斯分类发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率,其优点是算法简单、所需估计参数很少、对缺失数据不太敏感。理论上,朴素贝叶斯分类与其他分类方法相比具有最小的误差率,但实际上并非总是如此,因为朴素贝叶斯分类假设样本各个特征之间相互独立,这个假设在实际应用中往往是不成立的,从而影响分类正确性。因此,当样本特征个数较多或者特征之间相关性较大时,朴素贝叶斯分类效率比不上决策树模型;当各特征相关性较小时,朴素贝叶斯分类性能最为良好。总的来说,朴素贝叶斯分类算法简单有效,对两类、多类问题都适用。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。

(二)朴素贝叶斯分类数学原理

1,贝叶斯定理

贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。


其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

P(A)是A的先验概率或边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。

P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率。

P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率。

P(B)是B的先验概率或边缘概率,也作

这篇关于机器学习经典算法详解及Python实现---朴素贝叶斯分类及其在文本分类、垃圾邮件检测中的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701002

相关文章

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

MySQL 定时新增分区的实现示例

《MySQL定时新增分区的实现示例》本文主要介绍了通过存储过程和定时任务实现MySQL分区的自动创建,解决大数据量下手动维护的繁琐问题,具有一定的参考价值,感兴趣的可以了解一下... mysql创建好分区之后,有时候会需要自动创建分区。比如,一些表数据量非常大,有些数据是热点数据,按照日期分区MululbU

MyBatis-Plus 中 nested() 与 and() 方法详解(最佳实践场景)

《MyBatis-Plus中nested()与and()方法详解(最佳实践场景)》在MyBatis-Plus的条件构造器中,nested()和and()都是用于构建复杂查询条件的关键方法,但... 目录MyBATis-Plus 中nested()与and()方法详解一、核心区别对比二、方法详解1.and()

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语