【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题

2024-02-11 17:52

本文主要是介绍【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🎉🎉欢迎光临🎉🎉

🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀

🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘📘

本专栏纯属为爱发电永久免费!!!

这是苏泽的个人主页可以看到我其他的内容哦👇👇

努力的苏泽icon-default.png?t=N7T8http://suzee.blog.csdn.net

目录

迭代算法,这是一种解决问题的强大工具。通过迭代,我们可以重复应用一组规则或操作来解决复杂的问题。本文将从基础的迭代概念开始,逐步介绍迭代算法的不同应用和技巧

1. 迭代的基础概念

2. 迭代的高级技巧

3. 迭代算法的应用


迭代算法,这是一种解决问题的强大工具。通过迭代,我们可以重复应用一组规则或操作来解决复杂的问题。本文将从基础的迭代概念开始,逐步介绍迭代算法的不同应用和技巧

1. 迭代的基础概念

在计算机科学中,迭代是指通过多次重复应用一组规则或操作来解决问题的方法。它通常与循环结构紧密相关,通过迭代可以逐步改变问题的状态,直到达到所需的结果。

例如,考虑计算一个数组中所有元素的和。使用迭代的方法,我们可以通过循环遍历数组中的每个元素,并将其累加到一个变量中,最终得到总和。

下面是一个使用迭代计算数组元素和的示例代码:

def compute_sum(array):total = 0for num in array:total += numreturn total# 测试代码
my_array = [1, 2, 3, 4, 5]
result = compute_sum(my_array)
print("The sum of the array is:", result)

在上述示例中,我们定义了一个compute_sum函数,接受一个数组作为输入,并使用迭代的方法计算数组元素的总和。通过循环遍历数组中的每个元素,并将其累加到变量total中,我们最终得到了数组的总和。

2. 迭代的高级技巧

除了基本的迭代概念外,还有一些高级的迭代技巧可以帮助我们解决更复杂的问题。以下是其中几种常见的技巧:

双指针迭代:在某些情况下,我们可以使用两个指针分别指向序列中的不同位置,并根据特定的规则移动这些指针来解决问题。例如,在查找排序数组中的两个数之和等于目标值的问题中,我们可以使用两个指针从序列的两端向中间移动。

def two_sum(nums, target):left = 0right = len(nums) - 1while left < right:sum = nums[left] + nums[right]if sum == target:return [nums[left], nums[right]]elif sum < target:left += 1else:right -= 1return []# 测试代码
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print("The two numbers with sum equal to", target, "are:", result)

在上述示例中,我们定义了一个two_sum函数,接受一个排序数组nums和目标值target作为输入。我们使用两个指针leftright分别指向数组的开头和末尾,并根据特定的规则移动这些指针。

如果指针所指的两个数之和等于目标值target,则返回这两个数。如果和小于目标值,则将left指针向右移动一位;如果和大于目标值,则将right指针向左移动一位。通过这种方式,我们逐步缩小搜索范围,直到找到满足条件的两个数或搜索范围为空。

 

迭代与递归的结合:有时候,我们可以将迭代与递归结合使用,以便更好地解决问题。例如,在树的遍历问题中,我们可以使用迭代的方式来模拟递归的过程,从而避免使用递归函数的系统调用开销。

class TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef preorder_traversal(root):if root is None:return []stack = []result = []node = rootwhile node or stack:while node:result.append(node.val)stack.append(node)node = node.leftnode = stack.pop()node = node.rightreturn result# 测试代码
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)result = preorder_traversal(root)
print("The preorder traversal of the tree is:", result)

在上述示例中,我们定义了一个TreeNode类来表示树的节点,其中包含值val、左子节点left和右子节点right

我们使用迭代的方式来实现树的前序遍历。首先,我们定义一个栈stack用于保存待访问的节点。我们从根节点开始,将根节点入栈。然后,不断迭代执行以下步骤:

  • 弹出栈顶节点,并将其值添加到结果列表中。
  • 将栈顶节点的右子节点入栈(如果存在)。
  • 将栈顶节点的左子节点入栈(如果存在)。

通过这种方式,我们模拟了递归的过程,同时避免了使用递归函数的系统调用开销。

 

迭代与动态规划:迭代与动态规划经常结合使用,以解决一些具有最优子结构性质的问题。通过迭代计算和存储子问题的解,我们可以避免重复计算,提高算法效率。

def fibonacci(n):if n == 0:return 0if n == 1:return 1dp = [0] * (n + 1)dp[0] = 0dp[1] = 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]# 测试代码
n = 6
result = fibonacci(n)
print("The", n, "th Fibonacci number is:", result)

我们使用迭代的方式,通过动态规划来避免重复计算。

我们使用一个数组dp来存储计算过的斐波那契数。首先,我们初始化dp[0]dp[1]分别为0和1。然后,我们从dp[2]开始,通过迭代计算dp[i] = dp[i - 1] + dp[i - 2],直到计算到第n个斐波那契数dp[n]

通过这种方式,我们避免了重复计算,提高了算法效率。

3. 迭代算法的应用

迭代算法在各种数据结构和算法中都有广泛的应用。以下是一些常见的迭代算法应用:

  • 链表和数组的遍历:通过迭代,我们可以逐个访问链表或数组中的元素。

  • 图的遍历:通过迭代,我们可以访问图中的所有节点和边。

  • 排序算法:许多排序算法,如冒泡排序、插入排序和快速排序,都使用了迭代的思想。

  • 搜索算法:许多搜索算法,如深度优先搜索(DFS)和广度优先搜索(BFS),也使用了迭代的方法。

 

这篇关于【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700449

相关文章

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费