电热水壶SAA检测标准及周期 澳洲清关

2024-02-11 14:10

本文主要是介绍电热水壶SAA检测标准及周期 澳洲清关,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

电热水壶是一种家用小电器,他的工作原理为水沸腾时产生的水蒸汽使蒸汽感温元件的双金属片变形,这种变形通过杠杆原理推动电源开关断电。其断电是不可自复位的,故断电后水壶不会自动再加热。电热水壶出口澳洲需要申请SAA。
在这里插入图片描述

众所周知SAA为澳大利亚的标准机构为Standards Association of Australian旗下认证,进入澳大利亚市场的电器产品必须符合SAA认证。

电热水壶SAA申请流程,SAA是分为两部分的,检测+注册,具体如下

1.申请商提供产品资料确定检测标准

2.申请商实验室双方明确详细要求

3.实验室开案测试(若产品测试不通过 申请商配合整改)

4.测试完成出具检测报告

5.注册SAA

电热水壶SAA认证依据标准:AS NZS IEC60335-1:2110+A1:213

IEC60335-2-15:2012+A1:2016

电热水壶SAA测试周期:4-6周期

电热水壶SAA测试准备资料:样品两个、附加型号样品一个(如有)、产品规格书、产品说明书、申请表、关键元器件清单

这篇关于电热水壶SAA检测标准及周期 澳洲清关的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699988

相关文章

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

基于 YOLOv5 的积水检测系统:打造高效智能的智慧城市应用

在城市发展中,积水问题日益严重,特别是在大雨过后,积水往往会影响交通甚至威胁人们的安全。通过现代计算机视觉技术,我们能够智能化地检测和识别积水区域,减少潜在危险。本文将介绍如何使用 YOLOv5 和 PyQt5 搭建一个积水检测系统,结合深度学习和直观的图形界面,为用户提供高效的解决方案。 源码地址: PyQt5+YoloV5 实现积水检测系统 预览: 项目背景

JavaFX应用更新检测功能(在线自动更新方案)

JavaFX开发的桌面应用属于C端,一般来说需要版本检测和自动更新功能,这里记录一下一种版本检测和自动更新的方法。 1. 整体方案 JavaFX.应用版本检测、自动更新主要涉及一下步骤: 读取本地应用版本拉取远程版本并比较两个版本如果需要升级,那么拉取更新历史弹出升级控制窗口用户选择升级时,拉取升级包解压,重启应用用户选择忽略时,本地版本标志为忽略版本用户选择取消时,隐藏升级控制窗口 2.

数据治理框架-ISO数据治理标准

引言 "数据治理"并不是一个新的概念,国内外有很多组织专注于数据治理理论和实践的研究。目前国际上,主要的数据治理框架有ISO数据治理标准、GDI数据治理框架、DAMA数据治理管理框架等。 ISO数据治理标准 改标准阐述了数据治理的标准、基本原则和数据治理模型,是一套完整的数据治理方法论。 ISO/IEC 38505标准的数据治理方法论的核心内容如下: 数据治理的目标:促进组织高效、合理地

C 标准库 - `<float.h>`

C 标准库 - <float.h> 概述 <float.h> 是 C 标准库中的一个头文件,它定义了与浮点数类型相关的宏。这些宏提供了关于浮点数的属性信息,如精度、最小和最大值、以及舍入误差等。这个头文件对于需要精确控制浮点数行为的程序非常有用,尤其是在数值计算和科学计算领域。 主要宏 <float.h> 中定义了许多宏,下面列举了一些主要的宏: FLT_RADIX:定义了浮点数的基数。

[数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别

数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2757 标注数量(xml文件个数):2757 标注数量(txt文件个数):2757 标注类别数:4 标注类别名称:["Platelets","RBC","WBC","sickle cell"] 每个类别标注的框数:

Temu官方宣导务必将所有的点位材料进行检测-RSL资质检测

关于饰品类产品合规问题宣导: 产品法规RSL要求 RSL测试是根据REACH法规及附录17的要求进行测试。REACH法规是欧洲一项重要的法规,其中包含许多对化学物质进行限制的规定和高度关注物质。 为了确保珠宝首饰的安全性,欧盟REACH法规规定,珠宝首饰上架各大电商平台前必须进行RSLReport(欧盟禁限用化学物质检测报告)资质认证,以确保产品不含对人体有害的化学物质。 RSL-铅,

《C++标准库》读书笔记/第一天(C++新特性(1))

C++11新特性(1) 以auto完成类型自动推导 auto i=42; //以auto声明的变量,其类型会根据其初值被自动推倒出来,因此一定需要一个初始化操作; static auto a=0.19;//可以用额外限定符修饰 vector<string> v;  auto pos=v.begin();//如果类型很长或类型表达式复杂 auto很有用; auto l=[] (int

YOLOv8/v10+DeepSORT多目标车辆跟踪(车辆检测/跟踪/车辆计数/测速/禁停区域/绘制进出线/绘制禁停区域/车道车辆统计)

01:YOLOv8 + DeepSort 车辆跟踪 该项目利用YOLOv8作为目标检测模型,DeepSort用于多目标跟踪。YOLOv8负责从视频帧中检测出车辆的位置,而DeepSort则负责关联这些检测结果,从而实现车辆的持续跟踪。这种组合使得系统能够在视频流中准确地识别并跟随特定车辆。 02:YOLOv8 + DeepSort 车辆跟踪 + 任意绘制进出线 在此基础上增加了用户