微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域

2024-02-11 10:28

本文主要是介绍微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、前言
  • 二、主要内容
  • 三、总结

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


一、前言

论文地址:https://arxiv.org/abs/2402.05140

Github 地址:https://github.com/sjunhongshen/Tag-LLM

大语言模型(Large Language Models,LLMs)在理解和生成自然语言方面展现出卓越的能力。然而,在预训练语料库中代表性不足的高度专业领域,例如物理和生物医学领域,LLMs 的能力可能会减弱。这项工作探讨了如何将通用 LLMs 改用于专门领域的有效任务求解器。研究者提出了一个新颖且与模型无关的框架,用于学习自定义输入标签(input tags)。这些标签被参数化为连续向量,附加到 LLM 的嵌入层,以调节 LLM。研究者设计了两种类型的输入标记:领域标签用于分隔专门的表示(例如,化学式)并提供领域相关的上下文;函数标签用于表示特定函数(例如,预测分子特性)并压缩函数求解指令。

在这里插入图片描述

研究者进而开发了一种三阶段协议,利用辅助数据和领域知识来学习这些标签。通过明确地将任务域与任务函数分开, Tag-LLM 能够通过不同输入标签的组合,对未见过的问题实现零样本泛化。此外,它在各种专业领域中的性能也有所提高,例如预测蛋白质或化学性质,以及建立药物与靶点相互作用模型。在这些任务上,它的性能优于为此类任务量身定制的专家模型。


二、主要内容

在 LLMs 领域中,一个长期存在的挑战是将最初设计用于一般用途的模型适应到专业领域并表现出色。感兴趣的领域通常涵盖高度专业化的学科,例如物理和生物医学。在这些领域中,数据与通常在自然语言处理中遇到的文本数据存在很大差异。为了弥补这一差距,Tag-LLM 框架旨在利用特定领域的输入标签,将通用 LLM 重新应用于专门的任务。这些标签被参数化为连续向量,并附加到 LLM 的嵌入层中,成为调节 LLM 功能以符合特定专业领域或任务要求的强大工具。

在这里插入图片描述

如上图所示:以蛋白质-药物结合亲和力预测任务为例,Tag-LLM 将领域标签 ⟨Protein⟩、⟨SMILES⟩ 和函数标签 ⟨Binding Affinity⟩ 注入输入,并映射到经过专门训练的嵌入。模型将最后一个隐藏状态传递到特定任务的头部,以生成所需的预测类型(例如,在本例中为标量结合亲和值)。

Tag-LLM 的设计和实现

Tag-LLM 将输入标签分为两类:领域标签和函数标签。领域标签用于给输入数据上下文化,向模型指明其处理的专业数据类型(例如化学式或蛋白质序列),而函数标签则指示模型进行具体任务,如预测分子特性或模拟药物与靶标的相互作用。这种分叉允许采用模块化方法来解决问题,通过部署各种输入标签组合,以 zero-shot 方式处理新的或未见过的任务。

为了学习这些标签,研究者开发了一个独特的三阶段协议,利用辅助数据集和领域知识逐步提高模型的理解能力和性能。在第一阶段中,通过使用域内数据进行 next-token prediction 任务来完善域标签。后续阶段涉及使用越来越专业化的面向任务的数据训练单个领域和跨领域的函数标签,以丰富模型解决不同领域复杂问题的能力。

经验结果与发现

实验结果表明,使用可学习的标签可以更细粒度地控制语言模型(LLM)。具体来说,使用实际文本(如 “Protein”)来条件化模型的效果在很大程度上取决于它在预训练语料库中的出现频率,但最终用户无法控制这一点。作者通过从目标领域的数据中显式学习标签嵌入来解决这个限制。实验还研究了标签长度对测试误差的影响。随着 p p p 值的增加,测试误差先减小后增大。这表明,虽然增加的自由度最初是有益的,但超过某个阈值可能会导致过拟合训练数据,从而阻碍测试时的性能。

经过定量评估,证明了 Tag-LLM 在多项任务中的有效性,包括八种语言的翻译、蛋白质特性预测和药物发现等科学工作。实验还证明了 Tag-LLM 方法可以有效地将 LLM 重新用于专业领域。例如,在多语言翻译任务中,使用领域标签表示不同的语言,并训练一个共享的函数标签 ⟨Translate⟩ 来编码翻译能力。实验结果验证了领域标签可以从数据中有效地提取领域信息,以及函数标签可以推广到未见过的领域和翻译对。值得注意的是,在制药领域的任务中,如药物组合预测和结合亲和力预测,Tag-LLM 取得了领先的结果,明显优于专用模型和其他重新利用 LLM 的方法。

Tag-LLM 采用模块化设计和系统化的训练协议,不仅提高了专项任务的性能,还提供了一个可扩展的框架,可以逐步添加新的标签。这种功能确保了 Tag-LLM 能够根据领域发展或面临新挑战时进行相应调整和扩展,具有实际落地应用价值。

总之,实验结果表明,Tag-LLM 方法在各种任务上的表现优于其他基线方法,证明了其有效性和实用性。


三、总结

Tag-LLM 可能是一个针对特定领域专业化 / {/} /微调大语言模型的好方法。

在这里插入图片描述

在这项工作中,研究者利用现有的 LLMs 来解决特定任务。开发了一个 LLM 标签系统,用于调节 LLM,并提出了一个学习标签的三阶段训练协议。实验结果表明,Tag-LLM 提高了 LLM 的预测质量,并允许对其行为进行更细粒度的控制。作者设想开源不同模型的学习标签可以帮助促进专业领域的研究。

基于 Tag-LLM 确定了几个未来发展方向。例如,在其他专业领域进一步验证 Tag-LLM,如基因功能预测(计算生物学)或求解偏微分方程(物理学)。用特定任务的输出头来增强函数标签的想法可以应用于各种预测问题。不过,在这项研究中,Tag-LLM 主要关注回归问题,而对分类和其他结构化预测问题的探索则留待今后研究。在计算效率方面,一个潜在的改进方法是大批量地训练标签,例如,将不同领域的数据串联在一起,而不是像论文里这样按顺序训练。最后,将 Tag-LLM 与其他领域适应范式(如上下文学习)相结合,也是一种值得探索的可能性。


📚️ 参考链接:

  • Tag-LLM: Repurposing General-Purpose LLMs for Specialized Domains
  • 沈向洋:致 AI 时代的我们 —— 请不要忽视写作的魅力

这篇关于微软 CMU - Tag-LLM:将通用大语言模型改用于专业领域的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699552

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Go语言实现将中文转化为拼音功能

《Go语言实现将中文转化为拼音功能》这篇文章主要为大家详细介绍了Go语言中如何实现将中文转化为拼音功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 有这么一个需求:新用户入职 创建一系列账号比较麻烦,打算通过接口传入姓名进行初始化。想把姓名转化成拼音。因为有些账号即需要中文也需要英

Go语言使用Buffer实现高性能处理字节和字符

《Go语言使用Buffer实现高性能处理字节和字符》在Go中,bytes.Buffer是一个非常高效的类型,用于处理字节数据的读写操作,本文将详细介绍一下如何使用Buffer实现高性能处理字节和... 目录1. bytes.Buffer 的基本用法1.1. 创建和初始化 Buffer1.2. 使用 Writ

深入理解C语言的void*

《深入理解C语言的void*》本文主要介绍了C语言的void*,包括它的任意性、编译器对void*的类型检查以及需要显式类型转换的规则,具有一定的参考价值,感兴趣的可以了解一下... 目录一、void* 的类型任意性二、编译器对 void* 的类型检查三、需要显式类型转换占用的字节四、总结一、void* 的

Mybatis提示Tag name expected的问题及解决

《Mybatis提示Tagnameexpected的问题及解决》MyBatis是一个开源的Java持久层框架,用于将Java对象与数据库表进行映射,它提供了一种简单、灵活的方式来访问数据库,同时也... 目录概念说明MyBATis特点发现问题解决问题第一种方式第二种方式问题总结概念说明MyBatis(原名

C语言线程池的常见实现方式详解

《C语言线程池的常见实现方式详解》本文介绍了如何使用C语言实现一个基本的线程池,线程池的实现包括工作线程、任务队列、任务调度、线程池的初始化、任务添加、销毁等步骤,感兴趣的朋友跟随小编一起看看吧... 目录1. 线程池的基本结构2. 线程池的实现步骤3. 线程池的核心数据结构4. 线程池的详细实现4.1 初

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行