中文点选识别

2024-02-11 09:12
文章标签 中文 识别 点选

本文主要是介绍中文点选识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文点选识别

测试网站:https://www.geetest.com/adaptive-captcha-demo

1. 开始验证

# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')# 2.点击【文字点选验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(By.XPATH,'//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(By.CLASS_NAME,'geetest_btn_click'
))
tag.click()time.sleep(5)

请添加图片描述

2. 获取图片

# 要识别的目标图片
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")

3. 目标文字识别

target_word_list = []
for tag in tag_list:ocr = ddddocr.DdddOcr(show_ad=False)word = ocr.classification(tag.screenshot_as_png)target_word_list.append(word)print("要识别的文字:", target_word_list)

4. 背景坐标识别

超级鹰:https://www.chaojiying.com/

import base64
import requestsres = requests.post(url='http://upload.chaojiying.net/Upload/Processing.php',data={'user': "自己的用户名",'pass': "自己的密码",'codetype': "9501",'file_base64': base64.b64encode(content)},headers={'Connection': 'Keep-Alive','User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',}
)res_dict = res.json()
print(res_dict)

结果:

请添加图片描述

将结果封装成字典,方便后续找到相应的字并点击

bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):word, x, y = item.split(",")bg_word_dict[word] = (x, y)
print(bg_word_dict)

请添加图片描述

5. 坐标点击

根据坐标,在验证码上进行点击。

# 8.点击
from selenium.webdriver import ActionChainsfor word in target_word_list:time.sleep(0.5)group = bg_word_dict.get(word)if not group:continuex, y = groupx = int(x) - int(bg_tag.size['width'] / 2)y = int(y) - int(bg_tag.size['height'] / 2)  # 超级鹰获取到的坐标原点为图片左上角,而我们需要的坐标原点为图片中心,所以需要进行转换。ActionChains(driver).move_to_element_with_offset(bg_tag, xoffset=x, yoffset=y).click().perform()time.sleep(1000)driver.close()

结果:

请添加图片描述

6. 完整代码

import base64
import timeimport ddddocr
import requests
from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.support.wait import WebDriverWaitdriver = webdriver.Edge()
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')# 2.点击【文字点选验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(By.XPATH,'//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(By.CLASS_NAME,'geetest_btn_click'
))
tag.click()time.sleep(3)# 要识别的目标图片
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")# 识别图片
target_word_list = []
for tag in tag_list:ocr = ddddocr.DdddOcr(show_ad=False)word = ocr.classification(tag.screenshot_as_png)target_word_list.append(word)print("要识别的文字:", target_word_list)# 6.背景图片
bg_tag = driver.find_element(By.CLASS_NAME,'geetest_bg'
)
content = bg_tag.screenshot_as_png# 7.识别背景中的所有文字并获取坐标
ocr = ddddocr.DdddOcr(show_ad=False, det=True)
poses = ocr.detection(content)  res = requests.post(url='http://upload.chaojiying.net/Upload/Processing.php',data={'user': "自己的用户名",'pass': "自己的密码",'codetype': "9501",'file_base64': base64.b64encode(content)},headers={'Connection': 'Keep-Alive','User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',}
)res_dict = res.json()
print(res_dict)# 封装成字典
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):word, x, y = item.split(""",")bg_word_dict[word] = (x, y)
print(bg_word_dict)# 8.点击
for word in target_word_list:time.sleep(0.5)group = bg_word_dict.get(word)if not group:continuex, y = groupx = int(x) - int(bg_tag.size['width'] / 2)y = int(y) - int(bg_tag.size['height'] / 2)  # 超级鹰获取到的坐标原点为图片左上角,而我们需要的坐标原点为图片中心,所以需要进行转换。ActionChains(driver).move_to_element_with_offset(bg_tag, xoffset=x, yoffset=y).click().perform()time.sleep(5)
driver.close()

这篇关于中文点选识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/699414

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode

解决Office Word不能切换中文输入

我们在使用WORD的时可能会经常碰到WORD中无法输入中文的情况。因为,虽然我们安装了搜狗输入法,但是到我们在WORD中使用搜狗的输入法的切换中英文的按键的时候会发现根本没有效果,无法将输入法切换成中文的。下面我就介绍一下如何在WORD中把搜狗输入法切换到中文。

sqlite不支持中文排序,采用java排序

方式一 不支持含有重复字段进行排序 /*** sqlite不支持中文排序,改用java排序* 根据指定的对象属性字段,排序对象集合,顺序* @param list* @param field* @return*/public static List sortListByField(List<?> list,String field){List temp = new ArrayList(

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

彻底解决win10系统Tomcat10控制台输出中文乱码

彻底解决Tomcat10控制台输出中文乱码 首先乱码问题的原因通俗的讲就是读的编码格式和写的解码格式不一致,比如最常见的两种中文编码UTF-8和GBK,UTF-8一个汉字占三个字节,GBK一个汉字占两个字节,所以当编码与解码格式不一致时,输出端当然无法识别这是啥,所以只能以乱码代替。 值得一提的是GBK不是国家标准编码,常用的国标有两,一个是GB2312,一个是GB18030 GB1

matplotlib中文乱码问题

在使用Matplotlib进行数据可视化的过程中,经常会遇到中文乱码的问题。显示乱码是由于编码问题导致的,而matplotlib 默认使用ASCII 编码,但是当使用pyplot时,是支持unicode编码的,只是默认字体是英文字体,导致中文无法正常显示,所以显示中文乱码。 文本使用系统默认字体、手动指定字体、使用字体管理器来解决。 一、系统默认字体(全局设置字体) 在Matplotlib中

BERN2(生物医学领域)命名实体识别与命名规范化工具

BERN2: an advanced neural biomedical named entity recognition and normalization tool 《Bioinformatics》2022 1 摘要 NER和NEN:在生物医学自然语言处理中,NER和NEN是关键任务,它们使得从生物医学文献中自动提取实体(如疾病和药物)成为可能。 BERN2:BERN2是一个工具,

行为智能识别摄像机

行为智能识别摄像机 是一种结合了人工智能技术和监控摄像技术的先进设备,它能够通过深度学习算法对监控画面进行实时分析,自动识别和分析监控画面中的各种行为动作。这种摄像机在安防领域有着广泛的应用,可以帮助监控人员及时发现异常行为,并采取相应的措施。 行为智能识别摄像机可以有效预防盗窃事件。在商场、超市等公共场所安装这种摄像机,可以通过识别异常行为等情况,及时报警并阻止不安全行为的发生