面试突击 | Redis 如何从海量数据中查询出某一个 Key?附视频

2024-02-10 22:18

本文主要是介绍面试突击 | Redis 如何从海量数据中查询出某一个 Key?附视频,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

1 考察知识点

本题考察的知识点有以下几个:

  1. Keys 和 Scan 的区别
  2. Keys 查询的缺点
  3. Scan 如何使用?
  4. Scan 查询的特点

2 解答思路

  1. Keys 查询存在的问题
  2. Scan 的使用
  3. Scan 的特点

3 Keys 使用相关

1)Keys 用法如下

在这里插入图片描述

2)Keys 存在的问题

  1. 此命令没有分页功能,我们只能一次性查询出所有符合条件的 key 值,如果查询结果非常巨大,那么得到的输出信息也会非常多;
  2. keys 命令是遍历查询,因此它的查询时间复杂度是 o(n),所以数据量越大查询时间就越长。

4 Scan 使用相关

我们先来模拟海量数据,使用 Pipeline 添加 10w 条数据,Java 代码实现如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import utils.JedisUtils;public class ScanExample {public static void main(String[] args) {// 添加 10w 条数据initData();}public static void initData(){Jedis jedis = JedisUtils.getJedis();Pipeline pipe = jedis.pipelined();for (int i = 1; i < 100001; i++) {pipe.set("user_token_" + i, "id" + i);}// 执行命令pipe.sync();System.out.println("数据插入完成");}
}

我们来查询用户 id 为 9999* 的数据,Scan 命令使用如下:

127.0.0.1:6379> scan 0 match user_token_9999* count 10000
1) "127064"
2) 1) "user_token_99997"
127.0.0.1:6379> scan 127064 match user_token_9999* count 10000
1) "1740"
2) 1) "user_token_9999"
127.0.0.1:6379> scan 1740 match user_token_9999* count 10000
1) "21298"
2) 1) "user_token_99996"
127.0.0.1:6379> scan 21298 match user_token_9999* count 10000
1) "65382"
2) (empty list or set)
127.0.0.1:6379> scan 65382 match user_token_9999* count 10000
1) "78081"
2) 1) "user_token_99998"2) "user_token_99992"
127.0.0.1:6379> scan 78081 match user_token_9999* count 10000
1) "3993"
2) 1) "user_token_99994"2) "user_token_99993"
127.0.0.1:6379> scan 3993 match user_token_9999* count 10000
1) "13773"
2) 1) "user_token_99995"
127.0.0.1:6379> scan 13773 match user_token_9999* count 10000
1) "47923"
2) (empty list or set)
127.0.0.1:6379> scan 47923 match user_token_9999* count 10000
1) "59751"
2) 1) "user_token_99990"2) "user_token_99991"3) "user_token_99999"
127.0.0.1:6379> scan 59751 match user_token_9999* count 10000
1) "0"
2) (empty list or set)

从以上的执行结果,我们看出两个问题:

  1. 查询的结果为空,但游标值不为 0,表示遍历还没结束;
  2. 设置的是 count 10000,但每次返回的数量都不是 10000,且不固定,这是因为 count 只是限定服务器单次遍历的字典槽位数量 (约等于),而不是规定返回结果的 count 值。

相关语法:scan cursor [MATCH pattern] [COUNT count]

其中:

  • cursor:光标位置,整数值,从 0 开始,到 0 结束,查询结果是空,但游标值不为 0,表示遍历还没结束;
  • match pattern:正则匹配字段;
  • count:限定服务器单次遍历的字典槽位数量 (约等于),只是对增量式迭代命令的一种提示 (hint),并不是查询结果返回的最大数量,它的默认值是 10。

5 Scan 代码实战

本文我们使用 Java 代码来实现 Scan 的查询功能,代码如下:

import redis.clients.jedis.Jedis;
import redis.clients.jedis.Pipeline;
import redis.clients.jedis.ScanParams;
import redis.clients.jedis.ScanResult;
import utils.JedisUtils;public class ScanExample {public static void main(String[] args) {Jedis jedis = JedisUtils.getJedis();// 定义 match 和 count 参数ScanParams params = new ScanParams();params.count(10000);params.match("user_token_9999*");// 游标String cursor = "0";while (true) {ScanResult<String> res = jedis.scan(cursor, params);if (res.getCursor().equals("0")) {// 表示最后一条break;}cursor = res.getCursor(); // 设置游标for (String item : res.getResult()) {// 打印查询结果System.out.println("查询结果:" + item);}}}
}

以上程序执行结果如下:

查询结果:user_token_99997

查询结果:user_token_9999

查询结果:user_token_99996

查询结果:user_token_99998

查询结果:user_token_99992

查询结果:user_token_99994

查询结果:user_token_99993

查询结果:user_token_99995

查询结果:user_token_99990

查询结果:user_token_99991

查询结果:user_token_99999

6 总结

通过本文我们了解到,Redis 中如果要在海量的数据数据中,查询某个数据应该使用 Scan,Scan 具有以下特征:

  1. Scan 可以实现 keys 的匹配功能;
  2. Scan 是通过游标进行查询的不会导致 Redis 假死;
  3. Scan 提供了 count 参数,可以规定遍历的数量;
  4. Scan 会把游标返回给客户端,用户客户端继续遍历查询;
  5. Scan 返回的结果可能会有重复数据,需要客户端去重;
  6. 单次返回空值且游标不为 0,说明遍历还没结束;
  7. Scan 可以保证在开始检索之前,被删除的元素一定不会被查询出来;
  8. 在迭代过程中如果有元素被修改, Scan 不保证能查询出相关的元素。

7 视频版

视频内容如下:https://www.bilibili.com/video/av88076985/

关注下面二维码,订阅更多精彩内容。
Java中文社群公众号二维码

这篇关于面试突击 | Redis 如何从海量数据中查询出某一个 Key?附视频的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/698161

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

使用SQL语言查询多个Excel表格的操作方法

《使用SQL语言查询多个Excel表格的操作方法》本文介绍了如何使用SQL语言查询多个Excel表格,通过将所有Excel表格放入一个.xlsx文件中,并使用pandas和pandasql库进行读取和... 目录如何用SQL语言查询多个Excel表格如何使用sql查询excel内容1. 简介2. 实现思路3

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis延迟队列的实现示例

《Redis延迟队列的实现示例》Redis延迟队列是一种使用Redis实现的消息队列,本文主要介绍了Redis延迟队列的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、什么是 Redis 延迟队列二、实现原理三、Java 代码示例四、注意事项五、使用 Redi

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

redis-cli命令行工具的使用小结

《redis-cli命令行工具的使用小结》redis-cli是Redis的命令行客户端,支持多种参数用于连接、操作和管理Redis数据库,本文给大家介绍redis-cli命令行工具的使用小结,感兴趣的... 目录基本连接参数基本连接方式连接远程服务器带密码连接操作与格式参数-r参数重复执行命令-i参数指定命

Python实现将实体类列表数据导出到Excel文件

《Python实现将实体类列表数据导出到Excel文件》在数据处理和报告生成中,将实体类的列表数据导出到Excel文件是一项常见任务,Python提供了多种库来实现这一目标,下面就来跟随小编一起学习一... 目录一、环境准备二、定义实体类三、创建实体类列表四、将实体类列表转换为DataFrame五、导出Da

Python视频处理库VidGear使用小结

《Python视频处理库VidGear使用小结》VidGear是一个高性能的Python视频处理库,本文主要介绍了Python视频处理库VidGear使用小结,文中通过示例代码介绍的非常详细,对大家的... 目录一、VidGear的安装二、VidGear的主要功能三、VidGear的使用示例四、VidGea