LLaMA 2 和 QianWen-14B

2024-02-10 07:36
文章标签 14b llama qianwen

本文主要是介绍LLaMA 2 和 QianWen-14B,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型 - 科技新闻 - EDA365电子论坛网

LLaMA 2 的硬件要求:

LLaMA 2 系列模型有不同的参数量版本,如7B、13B和70B等。对于不同大小的模型,其硬件需求也有所不同。以下是一些硬件要求摘要:

  • LLaMA 2 70B推理时全精度(FP32)显存占用最低要求为约280GB。
  • 对于微调和推理,Llama-13B 建议使用至少10GB VRAM(显存)的GPU,例如AMD 6900 XT、RTX 2060 12GB、3060 12GB、3080或A2000。

LLaMA 2 运行时还需要足够的CPU处理能力和内存支持,例如运行LLaMA-30B模型的最低RAM要求是32 GB,但对于更大数据集或更长文本序列可能需要更多的RAM,推荐使用64 GB或128 GB。

QianWen-14B 的硬件要求:

由于没有直接提到QianWen-14B具体硬件要求的确切信息,但可以参考类似的大型语言模型进行推测:

  • QianWen-14B 拥有140亿参数,理论上讲其对硬件的要求应该与同等规模的LLaMA模型相近或更高。
  • 预测它在推理阶段需要较高的GPU显存容量,可能超过10GB,甚至更多,取决于实现的优化程度和技术细节。
  • 同样需要强大的多核CPU以及大量的系统内存来处理大规模数据的读取和计算过程,RAM可能至少需要32GB起步,对于高效运行而言,64GB或以上的配置更为理想。

由于预训练大模型的运算密集性,实际部署时建议查阅官方发布的最新硬件指南以获取准确信息。

LLaMA 2 和 QianWen 是两个不同研发团队开发的大型语言模型,它们在技术背景、训练数据、参数量和应用场景等方面可能存在显著差异:

LLaMA 2

  • LLaMA 2 是由 Meta(前身为 Facebook)研发的第二代大型预训练语言模型。
  • 模型大小:包含从70亿到700亿参数的不同版本,提供了高度可扩展性和强大的语言理解与生成能力。
  • 训练数据:Llama 2 接受了大规模训练数据集的训练,并且据称相较于上一代提升了40%的数据量。
  • 开源状态:Llama 2 被定位为开源模型,在Hugging Face Model Hub上有相关资源可供研究者和开发者使用。
  • 透明度:Llama 2 在透明度评估中表现出色,这意味着其设计和工作原理对于社区而言更为公开和透明。
  • 应用场景:由于其强大的性能和微调能力,它被广泛应用于文本生成、自然语言理解、对话系统等多种场景。

QianWen

  • QianWen 是阿里云自主研发的大规模预训练语言模型系列,其中可能包括不同参数量的多个版本。
  • 性能表现:QianWen 系列中的某个高参数版本(如QianWen-Max)在权威评测中展现了超越同等尺寸模型的能力,甚至在某些指标上接近或优于 Llama 2 的部分版本。
  • 开源情况:至少有一个版本(QianWen-14B)是开源的,并且在发布后很短的时间内获得了社区的热烈反响和广泛应用。
  • 训练数据与参数量:虽然没有具体提到QianWen每个版本的确切参数量,但可以推测它同样基于大量互联网文本进行训练,并通过增大参数量来提高模型的表现力。
  • 应用领域:QianWen 也被用于智能客服、文本生成、知识问答等众多NLP应用中,并且因为阿里云的商业布局,特别适合集成到企业级服务和解决方案中。

总体来说,LLaMA 2 和 QianWen 都是各自团队在自然语言处理领域的先进技术代表,两者在功能和性能方面具有竞争性,而具体的差异则更多体现在背后的研发策略、优化技术和特定应用场景的适应性上。

这篇关于LLaMA 2 和 QianWen-14B的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/696509

相关文章

Python安装llama库出错“metadata-generation-failed”

Python安装llama库出错“metadata-generation-failed” 1. 安装llama库时出错2. 定位问题1. 去官网下载llama包 2.修改配置文件2.1 解压文件2.2 修改配置文件 3. 本地安装文件 1. 安装llama库时出错 2. 定位问题 根据查到的资料,发现时llama包中的execfile函数已经被下线了,需要我们手动修改代码后

Llama 3.1大模型的预训练和后训练范式解析

Meta的Llama大型语言模型每次出新版本,都会是一大事件。前段时间他们不仅发布了3.1的一个超大型的405亿参数模型,还对之前的8亿和70亿参数的模型做了升级,让它们在MMLU测试中的表现更好了。 不同模型在MMLU基准测试中的表现 他们还出了一个92页的技术报告《Llama 3 Herd of Models》(https://arxiv.org/abs/2407.21783),里

llama.cpp demo

git clone https://github.com/ggerganov/llama.cppcd llama.cpp 修改Makefile使能mfma参数     MK_CFLAGS   += -mfma -mf16c -mavx     MK_CXXFLAGS += -mfma -mf16c -mavx 安装python3依赖 cat ./requirements/requirem

llama.cpp本地部署大模型

llama.cpp 是一个C++库,用于简化LLM推理的设置,它使得在本地机器上运行大模型(GGUF格式)成为可能。 官网:https://github.com/ggerganov/llama.cpp 模型库: https://huggingface.co/ HF-Mirror 魔搭社区 安装并且使用llama.cpp 0.安装llama.cpp 官方文档:https://gi

3天把Llama训成Mamba,性能不降,推理更快!

近日,Mamba方面又搞出了有意思的研究:来自康奈尔、普林斯顿等机构的研究人员成功将Llama提炼成了Mamba模型,并且设计了新的推测解码算法,加速了模型的推理。\ 先来看一张其乐融融的图片(一眼AI): 右边的小羊驼代表Llama,而左边的蛇(Mamba)也是我们的老熟人了。 至于到底能不能其乐融融,咱就不管了,之所以有此场景,是因为Mamba方面又搞出了有意思的研究: ——如何把

LLaMA-Factory仓基础功能架构及NPU/GPU环境实战演练

LLaMA-Factory 基础篇 LLaMA-Factory简介 LLaMA-Factory是一个开源的大规模语言模型微调框架,设计用于简化大模型的训练过程。它提供了一个统一的平台,支持多种大模型的微调,包括LLaMA、BLOOM、Mistral等,旨在帮助用户快速适应和调整这些模型以适应特定的应用场景。LLaMA-Factory通过提供一套完整的工具和接口,使用户能够轻松地对预训练的

The Llama 3 Herd of Models【论文原文下载】

关注B站可以观看更多实战教学视频:hallo128的个人空间 The Llama 3 Herd of Models【论文原文】 点击下载:原文下载链接 摘要 现代人工智能(AI)系统由基础模型驱动。本文介绍了一组新的基础模型,称为 Llama 3。它是一群原生支持多语言、编码、推理和工具使用的语言模型。我们最大的模型是一个密集型 Transformer,具有 405    B {40

lit-llama代码解析

https://github.com/Lightning-AI/lit-llama/blob/main/README.md 下载的时候会报错误,因为网不行,一种方法就是多次尝试,另一种方法是终端连上代理下载 pycharm连接hugging face等网站_hugging face怎么连接-CSDN博客 根据指引下载权重 下载完权重运行:python scripts/convert_h

【AI大模型】近100页的LLaMA 3技术报告:模型结构及影响解析

LLama 3 405B模型效果已经赶上目前最好的闭源模型比如GPT 4o和Claude 3.5,这算是开源届的大事,技术报告接近100页,信息很丰富,粗略看了一下,很有启发。这里就LLaMA 3的模型结构、训练过程做些解读,并对其影响、小模型如何做、合成数据等方面谈点看法。 一、LLaMA 3模型结构 LLaMA 3的模型结构如图1所示,这基本已经形成目前Dense LLM模型的标准结构了,

LLaMA-Factory微调入门个人重制版

LLaMA-Factory微调入门个人重制版 说明: 首次发表日期:2024-08-30LLaMA-Factory 官方Github仓库: https://github.com/hiyouga/LLaMA-Factory 关于 本文是对LLaMA-Factory入门教程 https://zhuanlan.zhihu.com/p/695287607 的个人重制版,记录一下学习过程,省略掉了很