基于轻量级模型YOLOX-Nano的菜品识别系统

2024-02-08 23:52

本文主要是介绍基于轻量级模型YOLOX-Nano的菜品识别系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

工程Gitee地址:
https://gitee.com/zhong-liangtang/ncnn-android-yolox-nano

一、YOLOX简介

YOLOX是一个在2021年被旷视科技公司提出的高性能且无锚框(Anchor-free)的检测器,在YOLO系列的基础上吸收近年来目标检测学术界的最新成果,如解耦头(Decoupled Head)、数据增强、无锚框、标签分配策略SimOTA(Simplified Optimal Transport Assignment)等等。同时YOLOX继承了YOLO系列容易部署的特点,提供了支持ONNX、TensorRT、ncnn和Openvino的部署版本。

二、YOLOX网络结构

YOLOX的网络有多种版本,本文介绍YOLOX-Nano的网络结构,它由四个部分构成,分别为输入端、用于特征提取的主干网络(Backbone)、用于特征融合的颈部网络(Neck)以及预测(Prediction)。YOLOX-Nano模型网络结构图如下所示。
在这里插入图片描述

输入端采取了Mosaic和Mixup两种数据增强方法,在输入图片时将图片的高和宽统一进行等比例转换。
主干网络使用CSPDarknet网络进行特征提取,CSPDarknet网络利用52层卷积神经网络进行特征提取,1层利用1×1卷积作为全连接层,共计53层卷积神经网络。在特征提取时,会把在特征提取过程中三部分不同尺度的特征信息直接和下一部分的颈部网络相连接。
颈部网络使用FPN结构进行特征融合,在该部分,已经在主干网络获得的特征会结合不同尺度的特征信息来进一步进行特征提取,使模型的性能以及小目标的检测能力得到提升。
在预测部分,在该部分使用解耦头、无锚框、标签分配策略SimOTA等先进技术,最后将所有的特征信息统一转换成二维矩阵[16]。

三、 YOLOX主要改进部分

1、解耦头
为解决分类和回归冲突问题[8],YOLOX提出了解耦头这一解决方案。YOLO系列所采用的耦合头(Coupled Head)把分类和回归任务都放在一个1×1卷积里实现,它首先通过一个1×1卷积把前面的特征图的通道数统一进行调整,再经过2个3×3卷积层来提取特征,最后利用一个1×1卷积层,分别到分类和回归检测头,同时在回归分支还增加了IoU分支,解耦头工作流程图如图所示。在使用了解耦头之后,训练时收敛速度和准确率都有所提高,并且解耦头对端到端版本的YOLO会提高一定的准确率,这些都体现了解耦头的训练和预测价值。
在这里插入图片描述
2、数据增强
YOLOX采用了Mosaic和MixUp数据增强方法。
MixUp数据增强方法是通过线性插值的方式混合两个样本和标签,扩大了训练数据,同时提升了模型的泛化能力。
Mosaic数据增强方法是在训练期间将四张图进行裁剪、拼接成一张新图,大幅度扩充了图片数据,避免因训练集背景相似而降低模型的泛化能力。
然而,轻量化模型YOLOX-Nano如果同时使用这两种数据增强的方法,在COCO数据集上的AP反而会降低,但在不使用MixUp数据增强方法的同时削弱Mosaic数据增强方法的使用,AP反而有所上升。
3、无锚框
YOLOX是一个基于无锚框的检测器,而之前的YOLO系列都是基于锚框(Anchor-based)的检测器,但基于锚框的检测器存在较多的问题。首先,锚框大小的选择是采用聚类分析的方法,在训练之前可以得到比较好的锚框,但是这些聚类的锚框没有一定的通用性,在预测新的图片时效果不佳。其次,锚框机制增加了检测头的复杂度,并且对每张图片增加了预测的数量,因此也增加了预测的时间[20]。由于不使用锚框进行预测与使用锚框相比在COCO数据集上的AP基本相同,因此使用无锚框策略对于YOLOX检测器的预测速度和准确率都有所提升。
4、标签分配策略SimOTA
SimOTA是OTA的简化版本,OTA是解决候选框分配问题,一般在分配正负样本时是根据ground-truth的IoU与Anchor进行分配,但是正负样本的分配需要优先考虑全局[21]。所以我们通常把候选框分配问题当成一个线性规划中的优化传输问题(Optimal Transport,OT)来处理,其原理是建立一个代价矩阵,如果有M个ground-truth以及与其对应的N个候选框,即M×N为代价矩阵, 矩阵中的每个元素就是该ground-truth与候选框的Loss值,Loss值越大则说明选取这对ground-truth和候选框的代价越大,优化传输的目的是选取ground-truth与候选框相匹配,使总体代价最小。
5、YOLOX-Nano模型
轻量化模型YOLOX-Nano是所有YOLOX模型中参数量最小的模型,其参数量(Parameters)为0.9M,浮点运算数(FLOPs)为1.08G,而它比参数量相当的NanoDet模型在COCO数据集上的AP高1.8%,比YOLOv4-Tiny模型的AP高10%[8]。更为重要的是,轻量化模型YOLOX-Nano可以被部署到移动端或其他嵌入式设备上,说明它有一定的工业价值,在应对实时检测的同时也能与设备的其他功能进行配合,共同完成工作。

四、试验环境与模型训练

模型训练的GPU为NVIDIA GeForce RTX 3070 Laptop GPU 8GB,在基于安装Anaconda 4.10.3和CUDA 11.1的Windows 10操作系统下进行训练,采用cuDNN 8.0深度学习库,处理器为AMD Ryzen 7 5800H with Radeon Graphics,计算机内存为16G,使用开源深度学习框架Pytorch作为开发环境。
模型训练方式及模型评价指标
本文利用采集的数据集训练轻量化模型YOLOX-Nano,使用YOLOX官方提供的代码进行训练,训练时,不启动优先使用显存和混合精度训练,data_num_workers设置为0,batch size设置为16,以YOLOX官方提供的YOLOX-Nano模型文件作为预训练权重文件,训练300代,在训练时,前285代每10代记录一次训练信息,后15代每代记录一次训练信息,其他训练参数默认。作为对比,food-101的披萨数据集也采用以上所述方式进行训练。
为了评价YOLOX-Nano模型对菜品的检测效果,对样本进行测试后计算AP50、AP50_95(AP50和AP50_95是MS COCO比赛的map计算方式,其中AP指的是准确率(Precision)和召回率(Recall)为X,Y轴作图围成的面积,50指的是IoU设置为0.5时的AP值,50_95 指的是IoU设置为 0.5~0.95,以0.05为步长计算AP的平均值)以及total_loss来对模型进行评价。
五、结果与分析
训练结果与分析
在完全相同的训练条件下,无论是采集的数据集还是food-101的披萨数据集,总损失值都有一定的降低,模型在采集的数据集和food-101的披萨数据集上的AP50在训练300代之后分别为99.4%和90.8%,AP50_95分别为71.9%和79.8%。从训练的效果可以看出,无论是采集的数据集还是food-101的披萨数据集,AP50和AP50_95在训练第10代之后都达到了较高值,这也说明了YOLOX采用解耦头之后,收敛速度快的特点。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于基于轻量级模型YOLOX-Nano的菜品识别系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692579

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号