代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结

本文主要是介绍代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

309.最佳买卖股票时机含冷冻期

前言

思路

算法实现

 714.买卖股票的最佳时机含手续费

前言

思路

 算法实现

股票问题总结


309.最佳买卖股票时机含冷冻期

题目链接

文章链接

前言

        本题在买卖股票II的基础上增加了一个冷冻期,因此就不能简单分为持有股票和卖出股票两个状态了。

思路

        利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:第i天状态为j,所剩的最多现金为dp[i][j];

        本题的状态j可以分为如下四个状态:

  • 状态一:持有股票状态;
  • 因为冷冻期的存在,由不持有股票状态,引申出以下两种状态:

        状态二:保持卖出股票的状态(两天前就卖出了股票,并且已经度过了冷冻期,并保持未购入股票的状态);

        状态三:今天卖出股票;

  • 状态四:冷冻期;

2.确定递推公式:

        对于状态一的前一天可能有多种情况:

        情况一:前一天也为持有股票状态,dp[i][0] = dp[i - 1][0];

        情况二:前一天为处于保持卖出股票的状态,第i天购入股票,则dp[i][0] = dp[i - 1][1] - prices[i];

        情况三:前一天刚好为冷冻期,第i天购入股票,则dp[i][0] = dp[i - 1][3] - prices[i];

        因此dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]));

        对于状态二的前一天也不止一种情况:

        情况一:前一天额为保持卖出的状态,dp[i][1] = dp[i - 1][1];

        情况二:前一天为冷冻期,第i天恰好未保持卖出的状态,dp[i][1] = dp[i - 1][3] - prices[i];

        因此dp[i][1] = max(dp[i - 1][1], dp[i - 1][3] - prices[i]);

        对于状态三,第i天卖出股票,前一天必为持有股票的状态,即dp[i][2] = dp[i - 1][0] + prices[i];

        对于状态四,冷冻期的前一天必定刚好卖出股票,即dp[i][3] = dp[i - 1][2];

3.初始化dp数组:

        第0天持有股票,dp[0][0] 一定为-prices[0],卖出股票后,不管是当天还是冷冻期以及保持卖出股票的状态,所剩余的金钱一定都为0。

        因此dp[0][0] = -prices[0], dp[0][1] = 0, dp[0][2] = 0, dp[0][3] = 0;

4.确定遍历顺序:

        从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5.打印dp数组:

        以 [1,2,3,0,2] 为例,dp数组如下:

算法实现

class Solution {
public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int> (4,0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[prices.size() - 1][1], max(dp[prices.size() - 1][2], dp[prices.size() - 1][3]));}
};

 714.买卖股票的最佳时机含手续费

题目链接

文章链接

前言

        本题依然是买卖股票II的变形,在原题的基础上增加手续费即可。

思路

        dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金。

        如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来:

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0];
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i];

       所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

        如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来:

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1];
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

        所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

 算法实现

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {vector<vector<int>> dp(prices.size(), vector<int> (2, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return max(dp[prices.size() - 1][0], dp[prices.size() - 1][1]);}
};

股票问题总结

这篇关于代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692156

相关文章

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

如何解决idea的Module:‘:app‘platform‘android-32‘not found.问题

《如何解决idea的Module:‘:app‘platform‘android-32‘notfound.问题》:本文主要介绍如何解决idea的Module:‘:app‘platform‘andr... 目录idea的Module:‘:app‘pwww.chinasem.cnlatform‘android-32

kali linux 无法登录root的问题及解决方法

《kalilinux无法登录root的问题及解决方法》:本文主要介绍kalilinux无法登录root的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录kali linux 无法登录root1、问题描述1.1、本地登录root1.2、ssh远程登录root2、

SpringBoot应用中出现的Full GC问题的场景与解决

《SpringBoot应用中出现的FullGC问题的场景与解决》这篇文章主要为大家详细介绍了SpringBoot应用中出现的FullGC问题的场景与解决方法,文中的示例代码讲解详细,感兴趣的小伙伴可... 目录Full GC的原理与触发条件原理触发条件对Spring Boot应用的影响示例代码优化建议结论F

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2