代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结

本文主要是介绍代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

309.最佳买卖股票时机含冷冻期

前言

思路

算法实现

 714.买卖股票的最佳时机含手续费

前言

思路

 算法实现

股票问题总结


309.最佳买卖股票时机含冷冻期

题目链接

文章链接

前言

        本题在买卖股票II的基础上增加了一个冷冻期,因此就不能简单分为持有股票和卖出股票两个状态了。

思路

        利用动规五部曲进行分析:

1.确定dp数组及其下标的含义:

        dp[i][j]:第i天状态为j,所剩的最多现金为dp[i][j];

        本题的状态j可以分为如下四个状态:

  • 状态一:持有股票状态;
  • 因为冷冻期的存在,由不持有股票状态,引申出以下两种状态:

        状态二:保持卖出股票的状态(两天前就卖出了股票,并且已经度过了冷冻期,并保持未购入股票的状态);

        状态三:今天卖出股票;

  • 状态四:冷冻期;

2.确定递推公式:

        对于状态一的前一天可能有多种情况:

        情况一:前一天也为持有股票状态,dp[i][0] = dp[i - 1][0];

        情况二:前一天为处于保持卖出股票的状态,第i天购入股票,则dp[i][0] = dp[i - 1][1] - prices[i];

        情况三:前一天刚好为冷冻期,第i天购入股票,则dp[i][0] = dp[i - 1][3] - prices[i];

        因此dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][1] - prices[i], dp[i - 1][3] - prices[i]));

        对于状态二的前一天也不止一种情况:

        情况一:前一天额为保持卖出的状态,dp[i][1] = dp[i - 1][1];

        情况二:前一天为冷冻期,第i天恰好未保持卖出的状态,dp[i][1] = dp[i - 1][3] - prices[i];

        因此dp[i][1] = max(dp[i - 1][1], dp[i - 1][3] - prices[i]);

        对于状态三,第i天卖出股票,前一天必为持有股票的状态,即dp[i][2] = dp[i - 1][0] + prices[i];

        对于状态四,冷冻期的前一天必定刚好卖出股票,即dp[i][3] = dp[i - 1][2];

3.初始化dp数组:

        第0天持有股票,dp[0][0] 一定为-prices[0],卖出股票后,不管是当天还是冷冻期以及保持卖出股票的状态,所剩余的金钱一定都为0。

        因此dp[0][0] = -prices[0], dp[0][1] = 0, dp[0][2] = 0, dp[0][3] = 0;

4.确定遍历顺序:

        从递归公式上可以看出,dp[i] 依赖于 dp[i-1],所以是从前向后遍历。

5.打印dp数组:

        以 [1,2,3,0,2] 为例,dp数组如下:

算法实现

class Solution {
public:int maxProfit(vector<int>& prices) {vector<vector<int>> dp(prices.size(), vector<int> (4,0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3] - prices[i], dp[i - 1][1] - prices[i]));dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[prices.size() - 1][1], max(dp[prices.size() - 1][2], dp[prices.size() - 1][3]));}
};

 714.买卖股票的最佳时机含手续费

题目链接

文章链接

前言

        本题依然是买卖股票II的变形,在原题的基础上增加手续费即可。

思路

        dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金。

        如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来:

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0];
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i];

       所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

        如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来:

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1];
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee

        所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

 算法实现

class Solution {
public:int maxProfit(vector<int>& prices, int fee) {vector<vector<int>> dp(prices.size(), vector<int> (2, 0));dp[0][0] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return max(dp[prices.size() - 1][0], dp[prices.size() - 1][1]);}
};

股票问题总结

这篇关于代码随想录算法训练营Day51|309.最佳买卖股票时机含冷冻期、714.买卖股票的最佳时机含手续费、股票问题总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/692156

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来