Pytorch+NCCL源码编译

2024-02-08 10:20
文章标签 编译 源码 pytorch nccl

本文主要是介绍Pytorch+NCCL源码编译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 环境
    • 1. 安装cudnn
    • 2. 使用pytorch自带NCCL库进行编译
    • 3. 修改NCCL源代码并重新编译后测试,体现出源码更改

环境

  • Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-91-generic x86_64)
  • cuda 11.8+ cudnn 8
  • python 3.10
  • torch V2.0.1+ nccl 2.14.3
  • NVIDIA GeForce RTX 4090 *2

1. 安装cudnn

下载cudnn包之后打开

cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive
sudo cp ./include/cudnn*.h /usr/local/cuda/include
sudo cp ./lib/libcudnn* /usr/local/cuda/lib64chmod a+r /usr/local/cuda/include/cudnn*.h
chmod a+r /usr/local/cuda/lib64/libcudnn*

确认已经安装cudnn,除了cudnn_version.h,务必检查同目录下也有cudnn_ops_infer.h文件

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

可以看到对应cudnn版本为8.9.7

2. 使用pytorch自带NCCL库进行编译

这里选择在 docker 内进行源码编译和修改,方便直接将 docker 打包到新机器,方便移植,减少配置环境的问题的同时也避免破坏本地环境。

如果不用docker的话,之前是新建了一个conda 环境mynccl,编译之前先conda activate mynccl,再使用mynccl对应的解释器执行setup.py实测也是可以的。

使用 python setup.py 命令进行源码编译,develop 命令通常在开发过程中使用,以在"开发模式"中安装包,其中对源代码的更改会立即生效而无需重新安装。develop更改为install 就是直接安装。

#下载v2.0.1 源码
git clone --branch v2.0.1 --recursive https://github.com/pytorch/pytorch
cd pytorch/      # v2.0.1 pip install -r requirements.txt#编译源码-不使用本地nccl
#这里添加了USE_GLOO=0,未添加之前会报与gloo有关的错误,
#因为我的目的是研究nccl就暂时不用gloo了,不知道其他版本的torch会不会有类似问题
#正常的话只用MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 python setup.py develop即可MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 USE_GLOO=0 python setup.py develop

未添加use gloo=0时报错如下:

编译成功提示如下:

在这里插入图片描述

编译完毕,测试能否用torch,cuda,nccl以及识别出GPU。这里新建了一个try.py

# try.pyimport torchprint("torch version",torch.__version__)
print(torch.cuda.is_available(), torch.distributed.is_nccl_available())
print("nccl version:",torch.cuda.nccl.version())
print("cuda version:", torch.version.cuda)       cudnn_version = torch.backends.cudnn.version()
print("cuDNN version:", cudnn_version)
print(torch.cuda.device_count(), torch.cuda.get_device_name(0))

结果如下,可以看到nccl版本,对应双卡等
在这里插入图片描述

3. 修改NCCL源代码并重新编译后测试,体现出源码更改

执行以下代码,使用 nccl 作为通信后端,测试分布式训练中张量的 all_reduce 操作。

#test.pyimport os
import torch
import torch.distributed as distos.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group("nccl", rank=0, world_size=1)
x = torch.ones(6)if torch.cuda.is_available():y = x.cuda()dist.all_reduce(y)print(f"cuda allreduce: {y}")

在这里插入图片描述

修改 pytorch/third_party/nccl/nccl/src/collectives/all_reduce.cc 文件后,重新编译
原代码如下

/************************************************************************** Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.** See LICENSE.txt for license information************************************************************************/#include "enqueue.h"NCCL_API(ncclResult_t, ncclAllReduce, const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream);ncclResult_t ncclAllReduce(const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream) 
{NVTX3_FUNC_RANGE_IN(nccl_domain);struct ncclInfo info = { ncclFuncAllReduce, "AllReduce",sendbuff, recvbuff, count, datatype, op, 0, comm, stream, /* Args */ALLREDUCE_CHUNKSTEPS, ALLREDUCE_SLICESTEPS };return ncclEnqueueCheck(&info);
}

我们将函数内部全部注释掉,加一句 return ncclSystemError;

/************************************************************************** Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.** See LICENSE.txt for license information************************************************************************/#include "enqueue.h"NCCL_API(ncclResult_t, ncclAllReduce, const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream);ncclResult_t ncclAllReduce(const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream) 
{// NVTX3_FUNC_RANGE_IN(nccl_domain);// struct ncclInfo info = { ncclFuncAllReduce, "AllReduce",//   sendbuff, recvbuff, count, datatype, op, 0, comm, stream, /* Args *///   ALLREDUCE_CHUNKSTEPS, ALLREDUCE_SLICESTEPS };// return ncclEnqueueCheck(&info);return ncclSystemError;
}

每次修改pytorch中Nccl源码生效需要进行重新编译,先删除原有编译文件再重新编译

#删除原有nccl相关的
rm -r pytorch/build/nccl*#重新编译
MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 USE_GLOO=0 python setup.py develop#运行测试文件,看看有没有报错
python test.py

在这里插入图片描述
报错ncclSystemError,体现出了源码的更改。

这篇关于Pytorch+NCCL源码编译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690727

相关文章

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

Spring 中 BeanFactoryPostProcessor 的作用和示例源码分析

《Spring中BeanFactoryPostProcessor的作用和示例源码分析》Spring的BeanFactoryPostProcessor是容器初始化的扩展接口,允许在Bean实例化前... 目录一、概览1. 核心定位2. 核心功能详解3. 关键特性二、Spring 内置的 BeanFactory

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时