Pytorch+NCCL源码编译

2024-02-08 10:20
文章标签 编译 源码 pytorch nccl

本文主要是介绍Pytorch+NCCL源码编译,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 环境
    • 1. 安装cudnn
    • 2. 使用pytorch自带NCCL库进行编译
    • 3. 修改NCCL源代码并重新编译后测试,体现出源码更改

环境

  • Ubuntu 22.04.3 LTS (GNU/Linux 5.15.0-91-generic x86_64)
  • cuda 11.8+ cudnn 8
  • python 3.10
  • torch V2.0.1+ nccl 2.14.3
  • NVIDIA GeForce RTX 4090 *2

1. 安装cudnn

下载cudnn包之后打开

cd cudnn-linux-x86_64-8.9.7.29_cuda11-archive
sudo cp ./include/cudnn*.h /usr/local/cuda/include
sudo cp ./lib/libcudnn* /usr/local/cuda/lib64chmod a+r /usr/local/cuda/include/cudnn*.h
chmod a+r /usr/local/cuda/lib64/libcudnn*

确认已经安装cudnn,除了cudnn_version.h,务必检查同目录下也有cudnn_ops_infer.h文件

cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

可以看到对应cudnn版本为8.9.7

2. 使用pytorch自带NCCL库进行编译

这里选择在 docker 内进行源码编译和修改,方便直接将 docker 打包到新机器,方便移植,减少配置环境的问题的同时也避免破坏本地环境。

如果不用docker的话,之前是新建了一个conda 环境mynccl,编译之前先conda activate mynccl,再使用mynccl对应的解释器执行setup.py实测也是可以的。

使用 python setup.py 命令进行源码编译,develop 命令通常在开发过程中使用,以在"开发模式"中安装包,其中对源代码的更改会立即生效而无需重新安装。develop更改为install 就是直接安装。

#下载v2.0.1 源码
git clone --branch v2.0.1 --recursive https://github.com/pytorch/pytorch
cd pytorch/      # v2.0.1 pip install -r requirements.txt#编译源码-不使用本地nccl
#这里添加了USE_GLOO=0,未添加之前会报与gloo有关的错误,
#因为我的目的是研究nccl就暂时不用gloo了,不知道其他版本的torch会不会有类似问题
#正常的话只用MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 python setup.py develop即可MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 USE_GLOO=0 python setup.py develop

未添加use gloo=0时报错如下:

编译成功提示如下:

在这里插入图片描述

编译完毕,测试能否用torch,cuda,nccl以及识别出GPU。这里新建了一个try.py

# try.pyimport torchprint("torch version",torch.__version__)
print(torch.cuda.is_available(), torch.distributed.is_nccl_available())
print("nccl version:",torch.cuda.nccl.version())
print("cuda version:", torch.version.cuda)       cudnn_version = torch.backends.cudnn.version()
print("cuDNN version:", cudnn_version)
print(torch.cuda.device_count(), torch.cuda.get_device_name(0))

结果如下,可以看到nccl版本,对应双卡等
在这里插入图片描述

3. 修改NCCL源代码并重新编译后测试,体现出源码更改

执行以下代码,使用 nccl 作为通信后端,测试分布式训练中张量的 all_reduce 操作。

#test.pyimport os
import torch
import torch.distributed as distos.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '29500'
dist.init_process_group("nccl", rank=0, world_size=1)
x = torch.ones(6)if torch.cuda.is_available():y = x.cuda()dist.all_reduce(y)print(f"cuda allreduce: {y}")

在这里插入图片描述

修改 pytorch/third_party/nccl/nccl/src/collectives/all_reduce.cc 文件后,重新编译
原代码如下

/************************************************************************** Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.** See LICENSE.txt for license information************************************************************************/#include "enqueue.h"NCCL_API(ncclResult_t, ncclAllReduce, const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream);ncclResult_t ncclAllReduce(const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream) 
{NVTX3_FUNC_RANGE_IN(nccl_domain);struct ncclInfo info = { ncclFuncAllReduce, "AllReduce",sendbuff, recvbuff, count, datatype, op, 0, comm, stream, /* Args */ALLREDUCE_CHUNKSTEPS, ALLREDUCE_SLICESTEPS };return ncclEnqueueCheck(&info);
}

我们将函数内部全部注释掉,加一句 return ncclSystemError;

/************************************************************************** Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.** See LICENSE.txt for license information************************************************************************/#include "enqueue.h"NCCL_API(ncclResult_t, ncclAllReduce, const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream);ncclResult_t ncclAllReduce(const void* sendbuff, void* recvbuff, size_t count,ncclDataType_t datatype, ncclRedOp_t op, ncclComm* comm, cudaStream_t stream) 
{// NVTX3_FUNC_RANGE_IN(nccl_domain);// struct ncclInfo info = { ncclFuncAllReduce, "AllReduce",//   sendbuff, recvbuff, count, datatype, op, 0, comm, stream, /* Args *///   ALLREDUCE_CHUNKSTEPS, ALLREDUCE_SLICESTEPS };// return ncclEnqueueCheck(&info);return ncclSystemError;
}

每次修改pytorch中Nccl源码生效需要进行重新编译,先删除原有编译文件再重新编译

#删除原有nccl相关的
rm -r pytorch/build/nccl*#重新编译
MAX_JOBS=32 USE_CUDA=1 USE_NCCL=1 USE_SYSTEM_NCCL=0 USE_GLOO=0 python setup.py develop#运行测试文件,看看有没有报错
python test.py

在这里插入图片描述
报错ncclSystemError,体现出了源码的更改。

这篇关于Pytorch+NCCL源码编译的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/690727

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟 开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚 第一站:海量资源,应有尽有 走进“智听

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

red5-server源码

red5-server源码:https://github.com/Red5/red5-server

TL-Tomcat中长连接的底层源码原理实现

长连接:浏览器告诉tomcat不要将请求关掉。  如果不是长连接,tomcat响应后会告诉浏览器把这个连接关掉。    tomcat中有一个缓冲区  如果发送大批量数据后 又不处理  那么会堆积缓冲区 后面的请求会越来越慢。